JEJPJICS / PURDUE Urban Farming

Team Members

Diana Del Real

Alyssa McNarney	Chemical Engineering	Project Manager
Madeline Moisio	Humanitarian Engineering	CSA Design Lead
Ethan Edwards	Civil Engineering	Prototype Design Lead
Aaron Nunes	Civil Engineering	Finance Design Lead
Brandon Banks	Electrical Engineering	Project Partner Liaison
Laurel Norris	First Year Engineering	Financial Officer
Natalie Zamiechowski	Chemical Engineering	Webmaster
Troy Weber	Environmental and Ecological Engineering	
Joyce Bernardino	First Year Engineering	
Daniel Eshleman	First Year Engineering	Purdue

PURDUE UNIVERSITY,

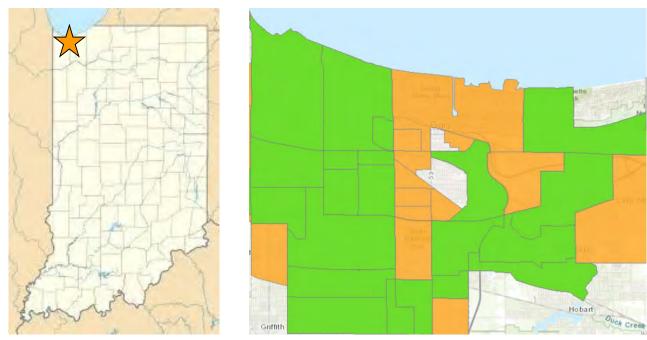
Firşt Year Engineering

Agenda

Framing the issues Project Details Questions and Comments

Framing the Issue: Food Deserts

Underserved by Quality Grocery Stores

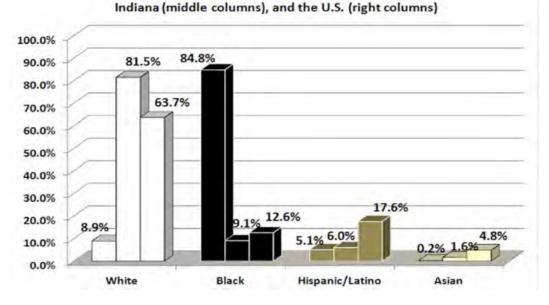

- Distance to store is >1 mile in urban areas and >10 miles for rural areas
- Disproportionately in low income communities
 - 55% found in communities with median income less than \$25,000 per year

Limited Options for Food

- Reliable access to high calorie, processed unhealthy food
- Creates poor diets and health effects
 - High blood pressure, diabetes, heart disease, etc

Gary, Indiana

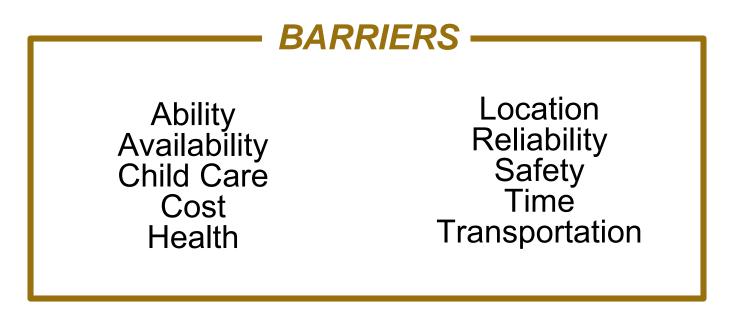
Orange = $\frac{1}{2}$ mile from nearest grocery store


Green = 1 mile from nearest grocery store

https://www.nwitimes.com/business/map-food-deserts-in-northwest-indiana/html_6ec49482-ce22-57fc-9d04-2f8c286b3ea0.html

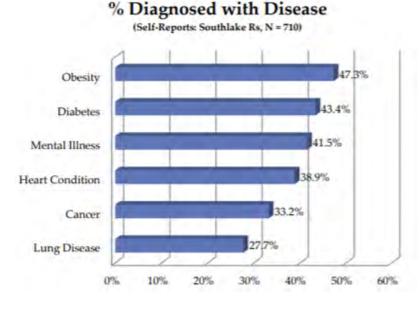
Framing the Issue: Gary, Indiana

- Majority of population: African American
- Average annual income: \$16,000



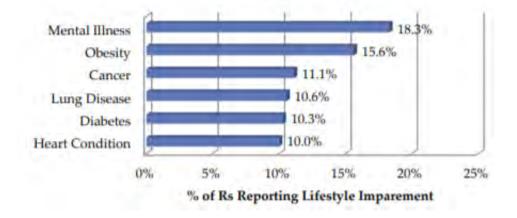
2010 racial/ethnic demographics of Gary (left columns),

https://www.census.gov/quickfacts/fact/table/garycityindiana/PST040218# PST040218



Framing the Issue: Access to Grocery Stores

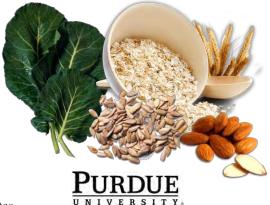
Top Self-Reported Health Concerns


"% Diagnosed with Disease" 2016.2016 Survey of the Community. Methodist Hospitals, Southlake Campus. Pg. 21

Effects of Health Concerns

Lifestyle Impairment by Disease

(Self-Reports: Southlake Rs, N = 710)



"Lifestyle Impairment by Disease" 2016. 2016 Survey of the Community. Methodist Hospitals, Southlake Campus. Pg. 21

Diet Choices that Affect Health Issues

- Diets high in cholesterol lead to many of the previously stated health issues
- Optional diet changes:
 - Foods low in trans fats, saturated fats, and sodium
 - Whole grains
 - Leafy greens
 - Nuts and seeds
 - Limit red meat consumption

Vieira, G. (2019, July 30). Type 2 Diabetes and Plant-Based Diets. Retrieved from

https://www.healthline.com/health-news/the-right-plant-based-diet-can-lower-your-risk-for-type-2-diabetes.

Scope of Project

EPICS

- Aquaponics
- Rooftop Garden
- Solar Panels
- Community Supported Agriculture

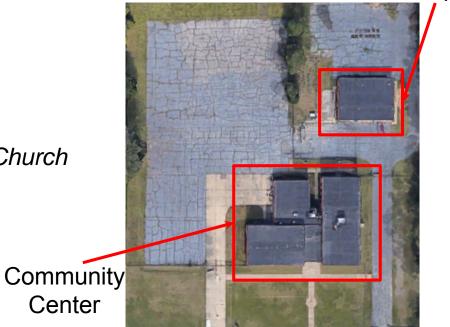
Stakeholder

- Convenience Stores
- Agriculture Fair
- Food Delivery
- Restaurant "Sunday Dinner"

4 Year Project Timeline

Our goal is to build infrastructure to produce food that is both beneficial and accessible to those in need in

Gary, Indiana.



Stakeholders

Project Partner

Marty Henderson **Peace Gardens & Farms** Master Gardener Senior Pastor – *Peace Baptist Church*

4 workers 6.2 acres of land Provides food for 85 families

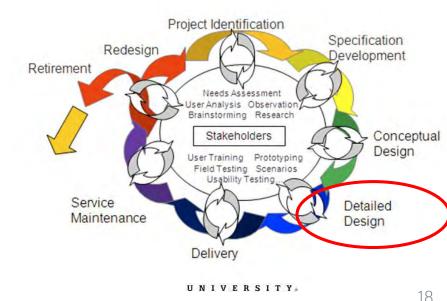
Motorpool

Stakeholders

- Gary Youth
- Members of community
 - Healthier food provided
- Re-entry of justice served individuals

 Work 1
- Local grocery stores

Project Details


Our goal for this semester was to finish constructing the aquaponics prototype and establish key learnings for it, develop a community supported agriculture (CSA) plan, and perform cost analysis on the project.

EPICS Design Phase

Detailed Design Phase: Goal is to design working prototype which meets functional specifications.

- Thought through several possible solutions
- Currently making the aquaponics prototype for our project
- Got feedback from stakeholders
- Field testing will happen once our prototype is tested here

Summary of Last Semester

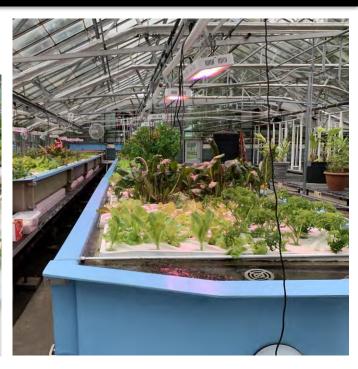
Spring 2019

- •Made a decision matrix for garden type
- Started getting things together for our prototype
- •Make long term timelines and goals for the team
- Worked on brainstorming ideas for a mobile market
- •Created CAD designs for the prototype
- •Started a plan for implementing into the motor pool
- •Started to work on permits and procedures for the system
- •Went on a site visit to gather information for the project

Site Visit Takeaways

September 28th

- Metric of food: 40 lbs of produce per family per year (family = 4 people)
- Growing year round in hoop houses
- Measurements of our growing area
- Top 4 vegetables people want
- Plans for the whole property



Site Visit Takeaways

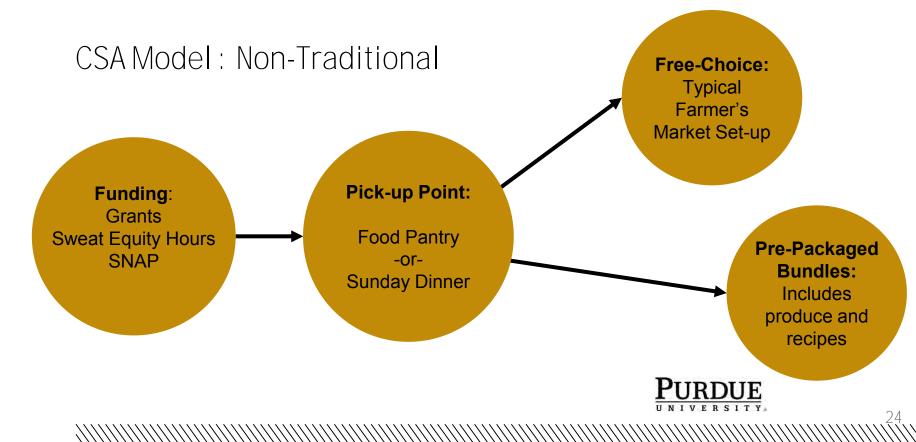
East Chicago Aquaponics

Community Supported Agriculture

Definitions

What is a CSA?

Community Supported Agriculture •



AND CREW

https://www.nal.usda.gov/afsic/community-supported-agriculture

Definitions

Project Phases

1. Produce

What is being grown, where, and when will it be available?

3. Procedures

What is the process for harvesting, cleaning, sanitizing, storing, and delivering produce?

5. Impact

What are the outputs and outcomes of the program? What is the next iteration?

2. Packages

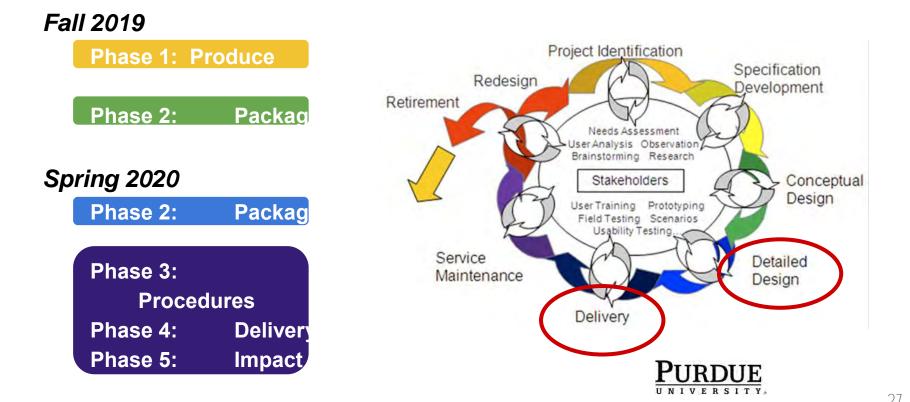
What resources are included with the package, how does the user interact with them?

4. Delivery

How is the program advertised? What channels are used for communication?

Ongoing: Funding

What are grants looking for? How are we funding this program?


Phases in the Design Process

Fall 2019

Phases in the Design Process

Fall 2019 Semester Deliverables

Phase 1: Produce

- 1. Farm Plan and Algorithm (Senior Design Project)
- 2. Harvesting + Storing Profiles

Phase 2: Packages

- 1. Health-Conscious Recipes
- 2. Handouts for Packages: Recipe, Storage, Health Benefits

Ongoing: Grants

- 1. Logic Model for Meeting with Franciscan Health
- 2. Grant Template

Harvest and Storage Profiles

Vegetabl e	Harvest Season	Storage Time Short Ferm Storage Long Ferm Storage		Nutrition Facts			
Basil	Year Round	3-10 days (<i>wet</i>) 3 years (<i>dry</i>)	Store in bag with wet paper towel at 50-65 degrees, if they have a stem, trim the stem and place upright in a glass of water and store in cool place	Can be stored in freezer or dried	Low in calories		
Beets	eetsMarch-July7-8 daysStore in bag with wet paper towel, put in fridge and use in 7-8 daysFrozen, pick cann				Low in cholesterol, no fat		
Broccoli	August- November	5-6 days	Store in bag with wet paper towel, put in fridge and use in 5-6 days	Can be frozen for 3-4 months	No cholesterol, low in fat, high in fiber		
Cabbage	age March-July 5-6 or 2-3 days (depending on storage technique)		March-July (<i>depending on</i> store in fridge in 5-6 days, place chopped raw cabbage in water and		Can be stored in cold room, root cellar or in garbage bins, do not store long term inside or with other food items, the smell will permeate	Low in cholesterol, calories and fat	

Ρ

RDUE

UNIVERSITY, https://www.wikihow.com/Freeze-

Harvesting Schedule

							_						Г						
CROP	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEPT	ост	NOV	DEC				Kav			
BASIL														-		Key			
BASIL														= harvest					
DEETS														-	_				
BEETS																= sto	ore		
BROCCOLI																			
BROCCOLI													L						
CABBAGE																			
CABBAGE																			
CARROTS																			
CARROIS																			
CHIVES																			
COLLARD																			
GREENS													Р	TTD		F			
													_						

Potential July Package

Potential July Package

uses plenty of vegetables and chicken breast! (which is lower in fat content than the thigh or leg)

Potential July Package

Produce:	Storage:	Side Dish: Smoth	ered Greens		
carrots	place in a plastic bag with a damp paper towel for up to two weeks store in cool, damp room and pack with damp towels, use within a few months can be canned, pickled, dried, fermented or frozen	This assortment of vegetables is flavored with turkey stock and is also a classic soul food! Makes 8 Servings <i>1 Serving = 3/4 cups</i>			
collard greens	can be stored in the fridge for 5 days can be frozen for 4-6 months	Calories: 165 Saturated Fat: 1 g	Total Fat: 4 g Cholesterol: 51 mg Total Fiber: 2 g		
hot pepper	can be stored on the countertop or crisper for 5 days can be dried or frozen	Sodium: 81 mg Protein: 21 g Potassium: 249 mg	Carbohydrates: 11 g		
kale	can be stored on the countertop or crisper for 5 days can be dried or frozen	Main Dish: Chicken Gumbo			
okra	store in the warmest part of fridge in a loose perforated bag, use in 3-4 days can be canned, frozen or pickled	This adapted Chicken Gumb vegetables and uses chicken b than the leg o	reast, which is less fatty		
onions	store in a cool place can also be canned, pickled or dried	Makes 8 Servings 1 S	Serving = 3/4 cups		
		Calories: 165 Saturated Fat: 1 g	Total Fat: 4 g Cholesterol: 51 mg		
Health Watch	Heart Health Low Fat High Blood Pressure	Sodium: 81 mg Protein: 21 g Potassium: 249 mg	Total Fiber: 2 g Carbohydrates: 11 g		

recipe from : <u>https://www.nhlbi.nih.gov/health/educational/healthdisp/pdf/recipes/Recipes-African-American.pdf</u> & <u>https://extension.purdue.edu/foodlink/recipe.php?recipe=Smothered%20Greens</u>

PURDUE

UNIVERSITY

Recipe Selection

Smothered Greens & Chicken Gumbo

- culturally relevant soul food to match the population of Gary
 - food is familiar, allows us to introduce more vegetables into diet
- healthy full of vegetables, low fat
- fresh vegetables from CSA package, discourages eating processed foods
 - maximizes produce usage for the month, uses 6 crops from the season

http://louisiana.kitchenandculture.com/sites/default/files/styles/large/public/recipes/Louisiana%20Kitchen%20%26amp%3B%20Culture/mustard-greens-bacon.jpg https://images-gmi-pmc.edge-generalmills.com/f4c9149f-0221-486b-b492-a5725f9b4895.jpg

LOGIC MODEL AND PARTNERING WITH FRANCISCAN

INPUTS	ACTIV	TIES	1 All and a second second	OUTCOMES			
What we invest	What we do	Who we reach	Why this project: short-term results	Why this project: intermediate results	Why this project: long-term results		
Volunteers Staff Money Crops Fish Materials Equipment Team of 10+ engineering students	Provide fresh produce Provide recipes for how to use fresh produce Provide opportunities to learn about where your food comes from Partner with local food pantries and churches	Low-income population of Gary Those without access to fresh produce	Members of the community will have access to fresh produce Members of the community will have knowledge of how to use fresh produce Increase of intake of fresh fruits and vegetables	Community members will have a better understanding of how their diet affects their health Promote health-conscious eating habits	Improved health of the community Lower rates of diseases such as cardiovascular disease, diabetes, and obesity Improved quality of life for the community		

Spring 2020 Semester Deliverables

Phase 2: Packages

- 1. Source Containers for Packages
- 2. Connect with Regional Food Pantries
- 3. Branding Packages
- 4. Advertising CSA Program to the Community

Ongoing: Grants

1. Begin Live Impact Grant

Summer 2020 Pilot Program

FARM PLAN PROGRAM

Senior Design Project

Multidisciplinary Engineering Concentration: Humanitarian Engineering

1. The Farm Plan Program incorporates the field's past crops, availability of fields and infrastructure, and projected climate for the year to recommend plants

- 2. It involves strategic decisions that manage pests and maintain and increase the quality of the land through crop rotation and companion planting
- **3.** The Farm Plan Program calculates the amount of produce, cost of seeds, and the expected number of Gary families served

Design Considerations: Crop Rotation

Crucifer	Legume
Cabbage	Peas
Broccoli	Beans
Collard	
Kale	Nightshade
Mustard	Tomatoes
Radish	Peppers
Turnip	
	Beetroot
Allium	Beets
Onion	Spinach

Miscellaneous

Iceburg

Lettuce

Marigold Okra

Romaine

Marrow

Cucumbers

Squash

Watermelon

Parslev

Carrots

Plants by Family

Benefits:

- → Soil Quality
- → Disease Control
 - Determined by Crop's Family

Desired Crop Rotation

Nightshade ⇒ Onion or Pea + Bean ⇒ Cabbage ⇒ Nightshade ⇒ Carrot ⇒ Marrow or Beetroot ⇒ Pea + Bean ⇒ Nightshade

Example Companion Pairs

Soil Enhancement			
Selected Plant	Companion		
Beets	Beans		
Broccoli	Beets		
Carrot	Beans		
Cucumber	Beans		
Cabbage	Beets		
Collard	Beets		
Onion	Beets		
Squash	Beans		

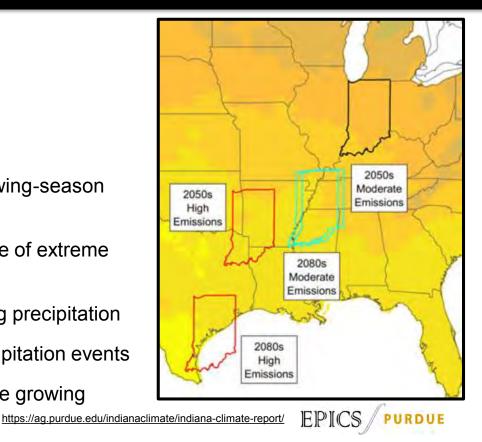
Weed Suppressant		
Selected Plant	Companion	
Beans	Squash	
Watermelon	Lettuce	
Watermelon	Radish	

Companion Planting

Purposely Planting in Close Proximity to Enhance Growth

Benefits:

- → Pest Repellent
- → Soil Enhancement
- → Natural Support
- → Weed Suppressant


Design Considerations: Climate Change

Projected Summers in Indiana

Mississippi + Arkansas

Projected Changes in Indiana

- Warmer annual, seasonal and growing-season temperatures
- Increased frequency and magnitude of extreme heat
- → Increased annual, winter and spring precipitation
- Increased frequency of heavy precipitation events
- Increased soil saturation early in the growing season
 https://ag.purdue.edu

Design Considerations: Field Availability

Field A

Hoop House x 3 Plot x 3

Field D

Raised Beds Number Currently Undetermined Plot x 4

Aquaponics Unit x 40

IF something was planted in Hoop House 1 last year, what is reccomended to be planted this year is dependent on what was planted last year

Crop Rotation Plant Planted Last Year? Reccomended This Year Selected Pla						
			Selected Plant			
Beets	N	N				
Spinach	N	N				
Broccoli	N	N				
Cabbage	N	N				
Collard	N	N				
Kale	N	N				
Mustard	N	N				
Radishes	N	N				
Turnips	N	N				
Carrots	N	N				
Cucumbers	N	N				
Squash	N	N				
Watermelon	N	N				
Iceberg	N	Y				
Lettuce	N	Y				
Marigolds	N	Y				
Okra	N	Y				
Romaine	N	Y				
Peppers	N	N				
Tomatoes	N	N				
Onions	N	N				
Beans	N	N				
Peas	N	N				

The user can select one of the *reccomended plants from D6-28* or *reccomended pairs from H6-29* that consider benefits like natural support, weed suppressant, pest repellent, or soil ehancement

Companion Planting					
Companion 1	Companion 2	Reccomended Pair	Selected Plant		
Beans	Sunflower	N			
Cucumber	Sunflower	N			
Squash	Corn	N			
Beets	Beans	N			
Broccoli	Beets	N			
Carrot	Beans	N			
Cucumber	Beans	N			
Cabbage	Beets	N			
Collard	Beets	N			
Onion	Beets	N			
Squash	Beans	N			
Broccoli	Rosemary	N			
Cabbage	Rosemary	N			
Kale	Rosemary	N			
Turnips	Rosemary	N			
lceberg	Basil	Y			
Lettuce	Basil	Y			
Romaine	Basil	Y			
Peppers	Basil	N			
Radishes	Basil	N			
Squash	Borage	N			
Tomatoes	Basil	N			
Watermelon	Lettuce	N			
Watermelon	Radish	N			

Companion

IF something was planted in Hoop House 1 last year, what is reccomended to be planted this year is dependent on what was planted last year

Crop Rotation Plant Planted Last Year? Reccomended This Year Selected Plant					
Plant			Selected Plant		
Beets	N	Y			
Spinach	N	Y			
Broccoli	N	N			
Cabbage	N	N			
Collard	N	N			
Kale	N	N			
Mustard	N	N			
Radishes	N	N			
Turnine	N	N			
Carrots	Y	N			
Cucumbers	N	Y			
Squash	N	Y			
Watermelon	N	Y			
Iceberg	N	Y			
Lettuce	N	Y			
Marigolds	N	Y			
Okra	N	Y			
Romaine	N	Y			
Peppers	N	N			
Tomatoes	N	N			
Onions	N	Y			
Beans	N	Y			
Peas	N	Y			

The user can select one of the *reccomended plants from D6-28* or *reccomended pairs from H6-29* that consider benefits like natural support, weed suppressant, pest repellent, or soil ehancement

	Companion Planting					
Companion 1	Companion 2	Reccomended Pair	Selected Plant			
Beans	Sunflower	Y				
Cucumber	Sunflower	Y				
Squash	Corn	Y				
Beets	Beans	Y				
Broccoli	Beets	N				
Carrot	Beans	N				
Cucumber	Beans	Y				
Cabbage	Beets	N				
Collard	Beets	N				
Onion	Beets	Y				
Squash	Beans	Y				
Broccoli	Rosemary	N				
Cabbage	Rosemary	N				
Kale	Rosemary	N				
Turnips	Rosemary	N				
lceberg	Basil	Y				
Lettuce	Basil	Y				
Romaine	Basil	Y				
Peppers	Basil	N				
Radishes	Basil	N				
Squash	Borage	Y				
Tomatoes	Basil	N				
Watermelon	Lettuce	Y				
Watermelon	Radish	Y				

Companion

IF something was planted in Hoop House 1 last year, what is reccomended to be planted this year is dependent on what was planted last year

Crop Rotation Plant Planted Last Year? Reccomended This Year Selected Plant					
			Selected Plant		
Beets	N	Y			
Spinach	N	Y			
Broccoli	N	N			
Cabbage	N	N			
Collard	N	N			
Kale	N	N			
Mustard	Ν	N			
Radishes	N	N			
Turnips	N	N			
Carrots	Y	N			
Cucumbers	N	Y			
Squash	N	Y			
Watermelon	N	Y			
lceberg	N	Y			
Lettuce	N	Y			
Marigolds	N	Y			
Okra	N	Y			
Romaine	N	Y			
Peppers	N	N			
Tomatoes	N	N			
Onions	N	Y			
Beans	N	Y			
Peas	N	Y			

	Compan	ion Planting			
Companion 1	Companion 2	Reccomended Pair	Selected Plant	Selected Plant	Companion
Beans	Sunflower	Y			
Cucumber	Sunflower	v		Squash	Corn
Squash	Corn	Y	X		
Deete	Deane	v.			
Broccoli	Beets	N			
Carrot	Beans	N			
Cucumber	Beans	Y			
Cabbage	Beets	N			
Collard	Beets	N			
Onion	Beets	Y			
Squash	Beans	Y			
Broccoli	Rosemary	N			
Cabbage	Rosemary	N			
Kale	Rosemary	N			
Turnips	Rosemary	N			
lceberg	Basil	Y			
Lettuce	Basil	Y			
Romaine	Basil	Y			
Peppers	Basil	N			
Radishes	Basil	N			
Squash	Borage	Y			
Tomatoes	Basil	N			

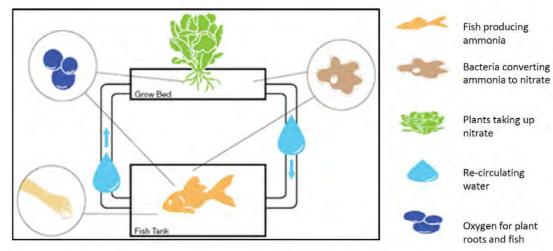
Plant	Yield of Plant (pound/acre)	Yield of Plant (pound/infrastructure)	Yield of Infrastructure (pound/infrastructure		
Beets	33,440	1658.2			
Beans	9,620	477.0			
Broccoli	15,170	752.2			
Cabbage	71,980	3569.3			
Carrots	82,760	4103.8			
Collard	23,800	1180.2			
Cucumbers	27,860	1381.5			
Iceberg	67,440	3344.1			
Kale	35,800	1775.2			
Lettuce	67,440	3344.1			
Marigolds	1,000	49.6			
Mustard	25,600	1269.4			
Okra	12,000	595.0			
Onions	111,220	5515.0			
Peas	5,740	284.6			
Peppers	64,960	3221.2			
Radishes	18,400	912.4			
Romaine	60,600	3005.0			
Opiniocia	27,000	1000.0			
Squash	33,000	1636.4	1096		
Trenders	172,760	0500.0			
Turnips	21,400	1061.2	A		
Watermelon	70,100	3476.0			
Basil	1,000	49.6			
Dange	1,000	40.0			
Corn	30,980	1536.2	507		
Personal	1,000	40.6			
Sunflower	1,000	49.6			

Finalization of Project

- 1. Incorporate
 - → Cost of Seeds
 - → Recommendations on Field Use Based on Climate Predictions
- 1. Scale Up to Each Infrastructure and Field
- Summary Page with Outputs + Cleaner Input Page

Prototype

Project Details


48

Prototype Project

Aquaponics System

- Water based growing
- Accessible oxygen
- Symbiotic relationship between fish and plants
- Can grow year round

Aquaponics

Long Term Goals and Deliverable

Gary is located in Plant Hardiness Zone 5.

- Last Frost: Early May
- First Frost: Early October

Provide a reproducible framework for further development of aquaponics systems in Midwestern food deserts.

Scalable to schools, churches, and community centers

Gary has a shortened growing season

Vision

3 Phase Build and Testing

- Phase I 1st row on each side of the fish pool
- Phase II 1st and 2nd row on each side of the fish pool
- Phase III all shelving units

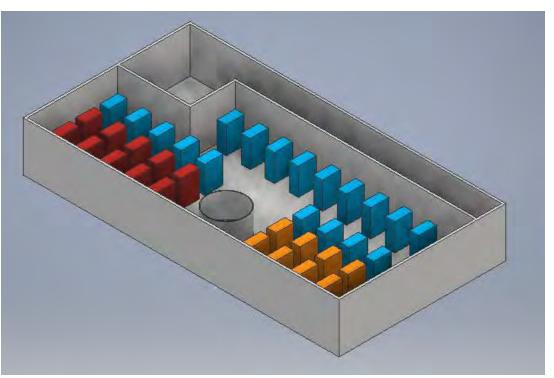


Figure: The envisioned motor pool layout

Design Requirements

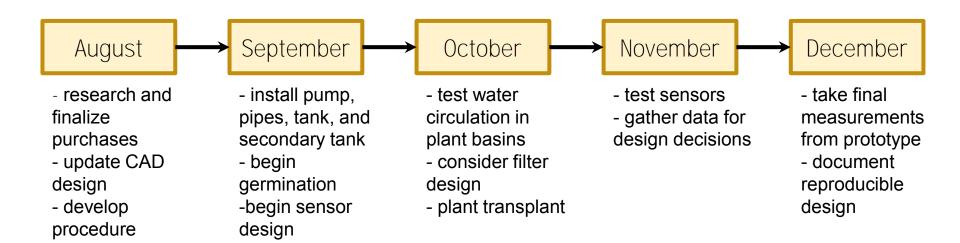
Customer Need	Customer Requirement	Current Performance	Target Value
Size of System	Needs to fit within Motor Pool building footprint	1906 sq. ft	1906 sq. ft
Amount of Food (lettuce)	Must be able to grow for 600 families	2040 lb/year	3600 lb/year
Production Density	Must grow required amount of lettuce in footprint	1.07 lb/(sq. ft * yr)	1.89 lb/(sq. ft * yr)
Cost of System	Needs to be economical	3.80 years to break even	2 years to break even

52

Semester Goals and Deliverables

Goals

- To gain insight on how the product will work
- Gather data on how prototype functions
- Measure plant conditions
- Treat water for plant health


Deliverables

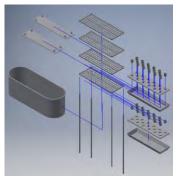
- Provide a working prototype
- Consistent flow rate from water spouts
- Successful transplant of lettuce heads

Semester Timeline

CAD Updates

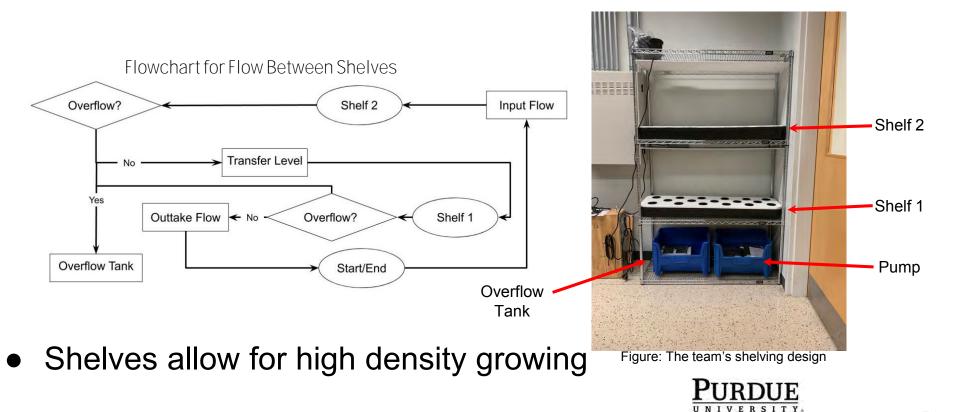
Model Design

- Previous design needed updating
- New models have been updated to prototype
- New design gives estimates on final product

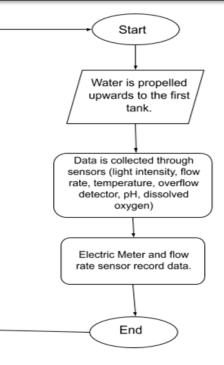


Previous Prototype Designs

Updated Prototype Designs



Shelving Design


56

Pipe Design

 PEX pipes to circulate water between trays

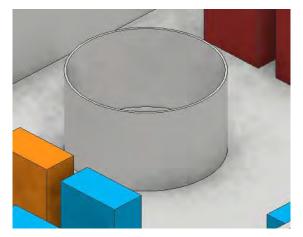
An Example Pipe Set-up from Site Visit

Flowchart for recording data in pipes

Pipe Diameter Selection

PEX Piping

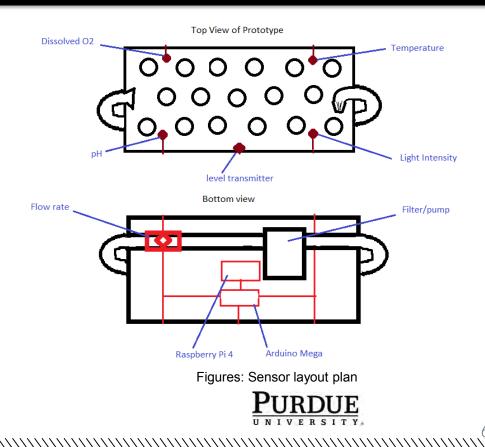
https://www.alibaba.com/productdetail/Advertising-Pex-Pipe-With-Warranty 60711286329.html


$$\frac{p_1}{\gamma_w} + z_1 + \frac{V_1^2}{2g} + h_{pump} = \frac{p_2}{\gamma_w} + z_2 + \frac{V_2^2}{2g} + h_L$$

- Use Bernoulli's equation
- Based on elevation head differentials
- Utilized PEX Pipe roughness height to select friction factor
- 1 Inch Piping at Minimum

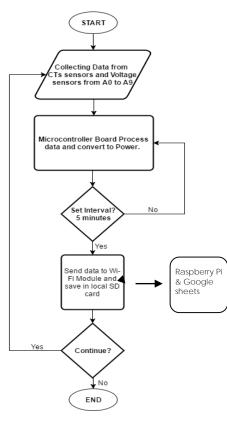
Tank Design Selection

- 1:2 fish to plant ratio
 - 2,040 plant sites
 - 1,020 fish total
- Fish need 1-2 gallons for every pound
 - 612 gallons
- Calculated water for trays
 - ~10 gal/tray x 120 trays = 1,200 gallons
- 2000 gallon tank at minimum (5 ft tall, 8 ft diameter)
 - Poly Processing


The envisioned fish tank modeled in CAD

Sensor Design

Sensors Selected


- Light intensity
- Flow Rate
- Temperature
- Overflow Detector
- pH
- Dissolved Oxygen

Sensor Flowchart

 Looping design to gather sensor data

 Outputs to google spreadsheet

Sample sensor connection to Arduino https://cdn.instructables.com/F2S/7PK4/ION 6O0G9/F2S7PK4ION6O0G9.LARGE.jpg?au to=webp&fit=bounds

Sensor Sample Output

	File Edit View Insert Format Data Tools Add	ons Help <u>All change</u>	s saved in Drive		
5	∽ 🖶 🏲 100% 🗸 \$ % .0 .00 123 - Defau	t (Ari 🕶 10 💌 🛛	3 I S A & E E -	≡・±・⊬・ፇ・ ഔ ⊑ ⊮ ℽ	-Σ.
Ŋ.					
	A	В	C	D	E
Ĩ.	Sensor Type	Current data	Min in past 48 hours	Max in past 48 hours	
2	Flow Rate (lpm)	11.36	11.	33 11.36	
1	Water Temperature (celcius)	21.11	20.	13 21.37	
ţ.	pH	8.32	7.	99 8.43	
ŝ	Dissolved O2 (ppm)	10		8 11	
5					
7 8					
0					

Sample Sensor Output to Google Sheets

Produce Decision Matrix

Criteria	Weight	Pea Microgreens	Tomatoes	Lettuce	Peppers	
Cost of Seeds	1	2	2	5	2	5 = Desirable 1 = Non-desirable
Project Partner Input	3	2	3	5	3	
Time to Germinate	2	5	3	4	2	
Ease of Transplanting	4	3	3	2	1	
Time to Harvest	4	5	3	3	2	
Totals		50	41	48	PURDU	E

UNIVERSITY

Regermination

- Fixing previous mistakes
 - Germination method
 - Light consistency
 - Water levels unknown before

Figure: First germination of lettuce seeds

- Regermination:
 - Controlling light
 - Time of transplant
 - Water testing

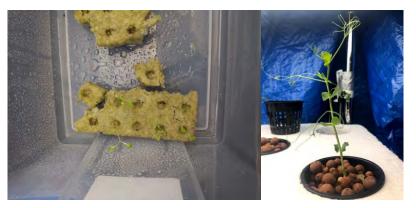


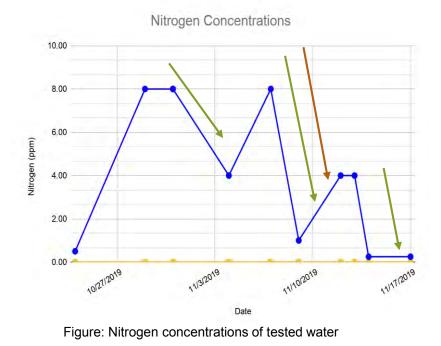
Figure: Second batch of lettuce seeds

Figure: Pea Microgreens

Final Produce List

- Cabbage (Brassica oleracea)
- Collard Greens (Brassica oleracea)
- Lettuce (Lactuca sativa)
- Mustard Greens (Brassica juncea)
- Spinach (Spinacia oleracea)
- Basil (Ocimum basilicum)
- Chives (Allium schoenoprasum)
- Dill Weed (Anethum graveolens)
- Parsley (Petroselinum crispum)

Figure: Pea Microgreens were transplanted into the hydroponics prototype three weeks after we began germinating them



Collected Data

Nitrogen Concentrations

- Ammonia levels
 - Healthy: 0.25 ppm
 - Current: 0.25 ppm
- Plants are not converting ammonia to nitrate and then nitrite
- Dangerous for fish health
 - \circ Illness \rightarrow death

Ammonia	Water dilution
Nitrate	→ Vinegar
Nitrite	- 3 -

Collected Data

pHLevels

- pH levels are relatively too high for the plants
- Vinegar will lower the pH

 Added 11/7
- Baking soda will raise the pH
- Our optimal pH level is between 6.5 and 7.0

Added vinegar

pH Levels

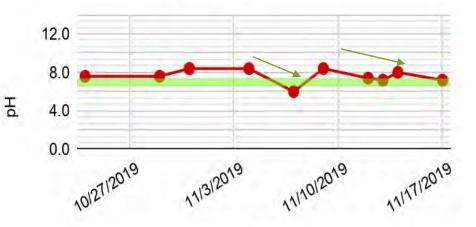


Figure: PH levels in system over the last three weeks

Next Steps

Incorporating Fish

- Bluegill and Lake Perch
 - 17 of either fish species in the prototype
 - 2 fish will be plenty
 - Must maintain ammonia levels
 - Monitoring fish health and growth rates
- Feeding
 - Twice per day
 - Morning
 - Night
 - Lowers fish cannibalism

https://en.wikipedia.org/wiki/Yellow_perch https://en.wikipedia.org/wiki/Bluegill

Final Aquaponics Design

Production Rates

- Plants
 - 2,040 plants total
 - 9,800 heads of lettuce per year
- Fish
 - 1,020 fish total
 - Bluegill 1,020 lbs/year
 - Lake Perch 510 lbs/year

Cost of Operation = \$1,340/year for lights and pump

Example growth from Site Visit

Prototype vs. Commercial Systems Comparison

- Prototype costs more than pre-made commercial systems per plant
- However, commercial designs are not space optimal and are not modular
- In urban spaces where space is limited, our superior production density justifies our prototype design

Example of commercial growing system (horizontal)

Next Steps to Achieve Design Requirements

- Optimize shelving design (4 shelves instead of 3 per unit)
- Analyze potential for material reuse
- Consider bulk or local purchasing for materials
- Continue to refine sensor design
- Material reuse for large scale filter

Example of filter media used in a large scale system

Finance

Project Details

Semester Timeline

- Comparison of market system vs prototype system
- Service learning grant
- Purchase requests
- Create budget phases

≻	September
	Coptonison

- Purchase Requests
- Grants
- Comparison of market system vs prototype system
- Create a budget sheet of prototype materials
 - Contact engineers and contractors for renovation costs

- October
- Scaling prototype budget form for phase one
- Create grant template
- Contact engineers and contractors for renovation costs
- Purchase requests

Contact engineers and contractors for renovation costs

November

- Create grant template

three

Find and apply for grants Scale prototype for phase two and

Purchase requests

Find and apply for grants

December

- Purchase requests
 - Contact contractors to start renovation on motorpool
- Complete estimation of total project

Phase Costs

		Phase 3	Operation	
\$11,779	\$9,597	\$19,194	\$40,569	
\$18,803	\$960	\$1,919	\$21,682	
\$1,977	\$0	\$0	\$1,977	
\$4,549	\$4,949	\$5,751	\$15,249	
				** Total Budget within 15% of Estimated Budget
	\$18,803 \$1,977 \$4,549	\$18,803 \$960 \$1,977 \$0 \$4,549 \$4,949	\$18,803 \$960 \$1,919 \$1,977 \$0 \$0 \$4,549 \$4,949 \$5,751	\$18,803 \$960 \$1,919 \$21,682 \$1,977 \$0 \$0 \$1,977 \$4,549 \$4,949 \$5,751 \$15,249

74

Modelling Heating and Cooling Costs

Sensitivity Analysis

High	\$727.51
Medium	\$1,171.57
Low	\$2,704.00

Heat Loss = $\frac{1}{R} * A * t$

- R = resistance to heat loss (insulation)
- A = surface area of the building
- T = time

Takeaway - Must optimize insulation to lower costs

Calculations taken from Mihelcic (2014) Env. Engineering Textbook

Building Retrofitting

Building Needs

- HVAČ
- Insulation
- Electric Capacity
- Structural Integrity

Engineers Contacted

- Enspect Engineering Consultants
- Falk Pli
- CDM Smith
- Inquired about company's ability to Perform As-Built Strength Assessments, Perform HVAC Analysis, Rewire Electrical, and Update Insulation.

Current <u>Budget</u>

Material	Quantity	Unit Price	Shipping	Total Price	
Ph sensor	1	164.00	0.00	\$164.00	-
Dissolved Oxygen Sensor	1	290.79	0.00	\$290.79	
Electricity Usage Monito	2	24.19	0.00	\$48.38	
Thermometer	4	9.99	0.00	\$39.96	
Flow Meter	2	12.99	0.00	\$25.98	-
Arduino	1	14.99	0.00	\$14.99	
Arduino Charger	1	8.99	0.00	\$8.99	
Lettuce Seeds	1	1.95	0.00	\$1.95	-
1' x 4' Flood Table	2	16.01	0.00	\$32.02	
1' x 4' LED lights	2	165.75	217.18	\$548.68	
Polystyrene Foam	1	15.02	0.00	\$15.02	
Sensorpush wireless the	2	\$49.99	0	\$99.98	_
API freshwater Test Kit	1	\$22.54	0	\$22.54	-
8x10 Tarp	1	\$7.99	0	\$7.99	-
Hydronic Heating Pad	2	\$11.99	0	\$23.98	
API Phosphate Test Kit	1	\$12.50	0	\$12.50	RDU.
			Total Price	\$1,977	ERSIT

Cost and Profit Calculations

Net Annual Revenue Per Phase

(annual plant revenue + annual fish revenue - estimated annual cost)

Net Annual Revenue Phase 1								
	lceberg	Collard Greens	Mustard Greens	Romaine				
Blue Gill	\$4,056	\$1,822	\$1,594	\$6,174				
Lake Perch	\$3,943	\$1,709	\$1,481	\$6,060				

Net Annual Revenue Phase 2								
	lceberg	Collard Greens	Mustard Greens	Romaine				
Blue Gill	\$8,415	\$3,947	\$3,491	\$12,649.				
Lake Perch	\$8,189	\$3,721	\$3,265	\$12,423				

Net Annual Revenue Phase 3								
	Iceberg	Collard Greens	Mustard Greens	Romaine				
Blue Gill	\$17,132	\$8,196	\$7,284	\$25,601				
Lake Perch	\$16,680.	\$7,744	\$6,832	\$25,149				

Revenue calculations assume that each type of lettuce is grown at full capacity and sold at local store prices and that fish are sold once a year at local prices

Profit, ROI, and Payback Period

Needed Investment

[Estimated startup costs							
		Phase 1	Phase 2	Phase 3	Renovations	Total		
	Cost	\$18,305	\$14,546	\$24,945	\$21,682	\$79,478		

Estimated Payback Period of each lettuce/fish combination

Assumes the profit is derived from the local sale prices of each food item

Payback Period (years)

	Iceberg	Collard Greens	Mustard Greens	Romaine
Blue Gill	5.1	9.2	10.3	<mark>3.8</mark>
Lake Perch	5.2	9.7	10.8	3.9

10 year Estimation of Profit and ROI

Assumes the profit is given by the combination with the shortest payback period (Romaine + Bluegill)

Year	Net Profit	Profit/year	ROI
1	1 -\$20,654		-0.7699
2	-\$21,305	-\$651	-0.5309
3	-\$20,758	\$546	-0.3185
4	\$4,842	\$25,601	0.0743
5	\$30,444	\$25,601	0.4671
6	\$56,046	\$25,601	0.8598
7	\$81,648	\$25,601	1.2526
8	\$107,249	\$25,601	1.6453
9	\$132,851	\$25,601	2.0381
10	\$158,453	\$25,601	2.4308

Profit and ROI include the installation year and cost at the maximum estimated profit and phase cost

Comparison (Phase 1)

EPICS Solution Startup Costs

Estimated startup costs Phase 1 Phase 2 Phase 3 Renovations Total Cost \$18,305 \$14,546 \$24,945 \$21,682 \$79,478

Estimated OTS (Off The Shelf) Cost & Sqft Comp

Current Aquaponics OTS Solutions								
Product Name	Rack Sqft	Grow Sqft	Sqft Comp	Cost	Rank			
EPICS	480.00	120.00	4	\$18,305	3			
FarmTek	672.00	256.00	2.6	\$12,185	1			
Aquaponi cs	880.00	288.00	3	\$19,995	2			

Estimated OTS (Off The Shelf) Cost & Yield Comp

Current Aquaponics OTS Solutions							
Product Name	Lettuce (heads) Yield	Fish (lb) Yield	Yield Comp (Ths)	Cost	Rank		
EPICS	3,060	255	780	\$18,305	3		
FarmTek	2,268	520	1,179	\$12,185	1		
Aquaponics	1,296	970	1,257	\$19,995	2		

All compared systems are equal to each other in regards to included materials & items.

Grants

Completed

- Service Learning Grant: received \$1200 for available funding over the next year

In Progress

- Tomberg Family Philanthropies Grant: began a Letter of Inquiry September 2019 and it is set to be submitted September 2020 with the full grant proposal due in December 2020

Grant Template

- Cover Letter
- Organization Background and Description
- Project Timeline and Budget
- Executive Summary

Semester Goal

- Prototype Cost and Maintenance vs. A Market Design and Maintenance
- Sent purchase requests for materials to ensure the Prototype & CSA Team has all the necessary supplies.
- Service Learning Grant (\$1,200)
- Made our first contact with Engineers and Contractors
- Estimated cost of retrofitting d
- Created a Grant Template -CSA team
- Created complete project budget per phase

Future Plans

- Partnership with Franciscan Health Hospitals
- Finding and applying to future grants
- Researching methods of selling extra produce
- Research ways we can lower costs of the scalable system
 - Larger shelves
 - Smaller tanks
 - Sensors
 - Optimizing components of the system
- Begin work on motorpool

QUESTIONS |COMMENTS| CONCERNS

