

Design Document

Smart City - Spring 2018

Design Document
Team: Smart City

Date: 28 April 2018

1
Last revised 04/28/18

Design Document

Smart City - Spring 2018

1 Table of Contents
1 Table of Contents 2

2 Revision History 4

3 Design Status 5

4 Project Charter 6

4.1 Description of the Community Partner 7

4.2 Stakeholders 8

4.3 Project Objectives 8

4.3.1 Project Operations & Logistics 8

4.3.2 Project Motivation 9

4.3.3 Project Specification 10

4.3.4 Proposed Solution 10

4.4 Outcomes/Deliverables 10

4.4.1 Hardware Team 11

4.4.2 Data Analysis Team 11

4.4.2 Website and Application Team 12

5 Semester Documentation - Spring 2018 14

5.1 Team Members 14

5.2 Current Status and Location on Overall Project Timeline 16

5.3 Goals for the Semester 16

5.4 Semester Timeline 16

5.4.1 Hardware Semester Timeline 18

5.4.2 Data Analysis Semester Timeline 19

5.4.3 Website and Application Development Semester Timeline 20

5.5 Semester Budget 21

5.5.1 Proposed Semester Budget 21

5.5.2 End of Semester Spending 22

2
Last revised 04/28/18

Design Document

Smart City - Spring 2018

6. Current Design 23

6.1 Hardware 23

6.1.1 Kinect 24

6.1.2 Raspberry Pi 33

6.1.3 GPS 34

6.1.4 Kinect Mounting System 37

Kinect Angle and FPS Calculations 37

Engineering Drawings 38

Utilizing Natural Shadow from Vehicle 39

6.1.5 City Vehicles: Garbage Trucks 40

City Garbage Truck Specifications 41

6.1.6 Intel NUC7i7BNH Microcontroller 41

6.1.7 Final Design Review Comments/Reflection 43

6.1.8 End-of-Semester Summary 43

6.2 Data Analysis 44

6.2.1 Requirements: 44

6.2.2 Overall Data Analysis Process 44

6.2.3 Current Method Adopted by the City 45

6.2.4 Our Intended Approach 45

6.2.5 Plane Fitting 46

6.2.6 Otsu’s Binarization 48

6.2.7 Quantification of Severity 49

Discussion of Standards: 49

Determining Average Diameter: 50

6.2.8 Visualization and testing of implementation 52

6.2.9 Location of execution of program and data transfer 53

6.2.10 Location where our code can be found and tested 54

6.2.11 Data Tracking 54

6.2.12 Current Approach 54

6.2.13 Our Methodology 54

6.2.14 Contour Tracking 54

3
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Object Tracking 56

Results 57

6.2.15 Final Design Review Comments/Reflection 62

6.2.16 End-of-Semester Summary 62

6.3 Website and Application Development 63

6.3.1 Existing Solutions 63

6.3.2 Project Specifications (Spring 2018) 73

6.3.3 Website Progression: Spring 2018 75

Hosting 76

Connecting to a Server 77

Data (Markers on Map) 77

6.3.4 Final Design Review Comments/Reflection 78

6.3.5 End-of-Semester Summary 79

Appendix A: Past Semester Archive 80

A.1: Team Members 80

A.1.1: Fall 2017 80

A.1.2: Spring 2017 81

A.2: Fall 2017 Timelines 83

A.2.1: Data Analysis and Hardware Team Fall 2017 83

A.2.2: App Team 84

A.3: Spring 2017 Timelines 86

A.3.1: Data Analysis and Hardware Team 86

A.3.2: App Team 86

Appendix B: Overall Project Design 88

B.1 Project Identification 88

B.2 Specification Development 89

B.3 Conceptual Design 90

B.4 Detailed design 91

B.5 Delivery 93

B.6 Service / Maintenance 94

4
Last revised 04/28/18

Design Document

Smart City - Spring 2018

2 Revision History
Date Author Revisions Made

02/16/17 Eric Jin Wook
Choi: SP17 Project
Manager

● Design Document Creation
● Project Charter
● Semester Information

04/14/17 Eric Jin Wook Choi ● Current Design

9/27/2017 Wesley Sawyer,
Grant Hilbert: FA17
Hardware Team

● Fall 2017 End-Semester update

10/6/17 Eric Jin Wook
Choi: FA17 Project
Manager

● Fall 2017 End-Semester update

11/29/2017 Eric Jin Wook Choi ● Fall 2017 End-Semester Update

11/30/2017 Hardi Sura ● Fall 2017 End-Semester Update

02/16/2018 Erika Lai Ting Lin:
SP18 Project
Manager

● Project Motivation
● Addition of Links
● Outcomes/Deliverables
● Semester Information

04/05/2018 Erika Lai Ting Lin ● Reorganization of Design Document

04/19/2018 Erika Lai Ting Lin ● Final Design Review Comments Reflections

4/28/2018 Erika Lai Ting Lin

Romita Biswas

Kalpan Jasani

Kartik Mittal

Ayuub Jose

● End of Semester Updates
● Contour Tracking

5
Last revised 04/28/18

Design Document

Smart City - Spring 2018

3 Design Status
Phase 1: Project Identification Status: Completed

Semester: Spring 2017

Phase 2: Specification Development Status: Completed
Semester: Spring 2017

Phase 3: Conceptual Design Status: Completed
Semester: Spring 2017

Phase 4: Detailed Design Status: In Progress
Semester: Spring 2018

Phase 5: Delivery Status: To be done*
Semester:

Phase 6: Service / Maintenance Status: To be done*
Semester:

6
Last revised 04/28/18

Design Document

Smart City - Spring 2018

4 Project Charter

4.1 Description of the Community Partner
The project partner for the Purdue Engineering Projects In Community Service (EPICS) Smart Cities
Team is the City of West Lafayette Department of Engineering (“The City”), whose primary
responsibilities are:

1.) to evaluate engineering solutions.
2.) to provide recommendations to the Mayor, other city departments, boards, and commissions

regarding private and public works throughout the city .
1

The City has requested EPICS to develop an integrated system that will detect, observe, analyze, and
suggest fixture recommendations for “potholes” within City limits. Potholes, are road defects where road
materials erode and form holes due to erosion from weather and vehicle travel rates, etc. .

2

Potholes may oftentimes result in harm to the community ranging from pedestrians to vehicle operators
by causing vehicle damages as well as putting lives at risk. “Out of 33,000 traffic fatalities per year,
one-third involve poor road conditions” and United States (U.S.) motorists spend approximately “$67

3

billion a year in extra for repairs and operating costs due to the poor conditions of roads.” To combat
4

increasing frequency and severity of potholes, the City has requested EPICS to tackle the problem
through Smart City design.

The City has expressed concerns regarding ongoing City efforts to provide pothole fixtures within City
limits; visual inspection is the primary source of detecting potholes through Pavement Surface Evaluation
and Rating (PASER). Marcus Smith, assistant city engineer and Smart City’s primary contact with The

5

City, provided general comments regarding The City’s needs and user/stakeholder identification. The 6

City is seeking to improve its processes with pothole detection and location tracking. The currently
implemented PASER and fixture schedules through the Department of Street & Sanitation require manual
labor and do not always produce accurate results. The project partner's overall mission is to increase the
efficiency of the road damage identification system within the city of West Lafayette. Smart City’s
end-deliverable is to develop an autonomous system that satisfies the City’s needs and will be delivered to
the Department of Engineering for implementation.

As a result of this design, the Department of Engineering will be able to recommend appropriate
adjustments to the Mayor’s office and other city departments in hopes of making the pothole detection
process more effective through a cost efficient and reliable design. Ultimately, the project partner will be
able to effectually detect potholes, thus being able to effectively repair road damage, making roads safer
for the West Lafayette community.

1 http://www.westlafayette.in.gov/engineering/
2 https://www.fhwa.dot.gov/pavement/pub_details.cfm?id=139
3 https://www.pothole.info/the-facts/
4 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=7556304
5 http://www.in.gov/indot/2469.htm

6

https://sharepoint.ecn.purdue.edu/epics/teams/smartcity/_layouts/15/WopiFrame.aspx?sourcedoc=/epics/teams/smar
tcity/Semester%20Documentation/Spring%202018/Project%20Partner%20Information/PP%20Questions%20and%2
0Answers.docx&action=default

7
Last revised 04/28/18

Design Document

Smart City - Spring 2018

4.2 Stakeholders
The stakeholders of this project include those who will be affected other than the project partner and those
who have interest in the project’s success. As this project focuses on a design specifically for the City, the
primary user is the West Lafayette Department of Engineering. However, this pothole detection system
will impact others as well:

● Primary Users
○ The City of West Lafayette Department of Engineering

■ 3-5 city engineers with respective sub-department interns.
Provision: A platform that will help identify/located potholes such that the city
is able to communicate a fixture schedule to the Department of Streets &
Sanitation (secondary users).

○ West Lafayette Community/General Public
■ Provision: An application allowing the community to report road conditions

throughout the city, i.e. pothole detection by public reachability.
● Secondary Users

○ Other departments and employee, eg. Streets & Sanitation, Internal, etc.
● Primary Stakeholders:

○ The City of West Lafayette Department of Engineering
○ Purdue University EPICS
○ West Lafayette Community and General Public

4.3 Project Objectives
4.3.1 Project Operations & Logistics
The Smart City EPICS Team is split into three sub-teams: Hardware (HD), Data Analysis (DA), and
Website and Application Development (WA) - all three teams need to work collaboratively to achieve the
overall goal. Each sub-team consists of 3-4 members directed by a Design Lead. The motivation for this
project is the lack of an efficient and autonomous method of pothole detection in the city of West
Lafayette, thus resulting in increased risk for the community. The HD Team will create a sensor-analysis
system that can be attached to existing city public service vehicles, and the DA Team will analyze the
gathered data to decipher the presence and severity of potholes. The system will eventually be
implemented on city vehicles: specifically for the Spring 2018 semester, the team will focus on
implementation on garbage trucks. The WA Team will develop a website for city use to view pothole
severity and location while also producing a smart-phone application accessible to the general public such
that they are able to directly report potholes and issues throughout the city. The mission of the project
partner is “to develop a vehicle mounted scanner to detect potholes and report their size and location” and
“to develop an application for residents to submit issues to the city.” Smart City’s design aims to satisfy 7

the mission of the project partner while also achieving individual team goals.

Each team has developed an independent design process according to their need-finding and project
deliverable goals and specifications. In the overall scope, individual design processes merge towards the
end-deliverable, but team dynamic, management, and procedure should retain individuality. The “EPICS

7

https://sharepoint.ecn.purdue.edu/epics/teams/smartcity/_layouts/15/WopiFrame.aspx?sourcedoc=/epics/teams/smar
tcity/Semester%20Documentation/Spring%202018/Project%20Partner%20Information/PP%20Questions%20and%2
0Answers.docx&action=default

8
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Smart City Project Design Document” is compiled to illustrate the progress and design process across the
whole team. The Design Document will encompass all of the work done in previous semesters and
current semester, displaying the entire design process that has been iterated.

4.3.2 Project Motivation
Potholes present a high risk for the community. The current approach the City of West Lafayette utilizes,
described below, is not integrated nor automated and requires much human effort/interaction. Pothole
repairs are unable to be completed all at once:

1. Vehicle and personal damage arising from poor road conditions
2. Need for identifying pothole location: GPS coordinates; streets with most potholes
3. Determine pothole severity

a. Currently using PASER - not optimized and requires much human-interaction
b. Visual inspection by City interns who “rate” the pothole severity by PASER standards of

differing road conditions - inefficient and new damage may evolve within
reporting-fixing time frame

4. Make repair recommendations
a. Engineering department recommends to Mayor’s office
b. Fixtures completed by Street & Sanitation department
c. Repair crews are sent to the most critical sections to patch and address any and all

damage

The City currently does “patchwork” fixture for potholes, i.e. filling potholes until a certain level is
reached where the pothole can no longer be ignored. The City also does patchwork for an entire street
until the total threshold of potholes on a given street cannot be neglected. We hope that our system can
locate and archive pothole fixtures so that The City can have an accurate assessment of pothole
thresholding.

Other pothole solution options are offered by private companies such as Google, Automatic Road
Analyzer (ARAN), Land Rover, and Ford:

Product Details

Google Patented Pothole
Detection System

Developed for later implementation on Google self-driving cars and is not readily
available 8

ARAN $1.5 Million military-grade vehicle that operates once every two years 9

Land Rover and Ford Motor vehicles that detect potholes to allow the vehicle to adjust using a
pneumatic system with the intention of decreasing vehicle damages , 10 11

EPICS Smart City Design Cost effective yet efficient autonomous pothole detection system that is able to
locate and quantify potholes on a regular basis.

8 US Patent 9,108,640 B2
9 http://pavement.com.au/equipment/automated-road-analyser/
10 http://www.landrover.com/experiences/news/pothole-detection.html
11https://media.ford.com/content/fordmedia/fna/us/en/news/2016/02/18/all-new-ford-fusion-v6-sport-helps-protect-a
gainst-potholes.html

9
Last revised 04/28/18

Design Document

Smart City - Spring 2018

The table, shown above, displays an overview of products that achieve similar objectives of detecting
potholes. The last row is our product and how it differs.

These are solutions that are directed in a similar direction, but there is no one existing solution that is cost
efficient, effective, and autonomously locates and quantifies potholes. Our solution is an efficient, simple,
attachable sensor that can be implemented on existing City public service vehicles (garbage, police,
administrative, etc.).

4.3.3 Project Specification
Based on initial need-finding and background identification of users/stakeholders, Smart City has
determined the following requirements and limitations for the project:

● Objectives or goals: The design will be cost-effective yet efficient and autonomous, that the City
is able to utilize with city vehicles with the goal of locating and quantifying potholes. The
system’s results will be accessible to the city via a website, and an application will be accessible
to the public to map potholes as well as report road issues to the city.

● Constraints: The design must be cost efficient yet produce an effective analysis as potholes
throughout the city are frequently autonomously monitored. The design must also be easily
accessible and adaptable, and the system cannot be drilled into city property for attachment.

● Function: A sensor will capture continuous frames of the road to collect data with respect to GPS
location. The data will then be analyzed to determine whether a pothole exists as well as its
severity. A website and application will be developed to visualize the location and severity of
potholes, and for the general public to report additional road issues.

● Implementations or means: The design will be implemented on city vehicles that frequent the
roads in this city. Specifically for the Spring 2018 semester, the design will be focused on the
implementation with city garbage trucks.

Smart City acknowledges that primary users have a mission of an easily operable and autonomous
system, thus concluding that the end-deliverable should depend on minimal technical specifications and
should be easily usable for the appropriate audience.

4.3.4 Proposed Solution
Smart City proposes a solution to develop a sensor system that can be easily attached to vehicles that
frequent city roads that is cost efficient yet effective. Based on a profile of The City’s needs, Smart City’s
end-deliverable should be able to provide visualization and digital documentation of potholes’ location
and severity and be able to communicate with appropriate technology and users/stakeholders for
completeness.

The HD Team is designing a system that will capture images and location information, and the DA Team
will analyze the data to deliver the severity of potholes at given locations. The WA Team will provide an
end-user functionality by developing a website for city use, allowing the relevant authority to access
location and severity of potholes. The WA Team will also be creating a downloadable application that
will allow the City to receive feedback from the public regarding city issues while also alerting the public
about location and severity and potholes.

4.4 Outcomes/Deliverables
The HD Team and DA Team work closely to develop the hardware and software into a product that will
capture images necessary for pothole analysis, constituting identification, classification, and fixture
recommendations. The WA Team then takes the analyzed data and displays the location and severity of
potholes on a map.

10
Last revised 04/28/18

Design Document

Smart City - Spring 2018

4.4.1 Hardware Team
Whereas Spring 2017 and Fall 2017 combined the hardware and data analysis team, Spring 2018 decided
that with fewer team members, it is more practical to allocate separate sub-teams since all three sub-teams
- HD, DA, and DA - need to work laterally. For Spring 2018, the HD would like to accomplish two
functional tasks: modified Kinect-imaging system and GPS location services. The first milestone is to
design an Initial Prototype that will be able to execute indoor testing in which the Kinect sensor, a line of
motion sensing input devices that was produced by Microsoft for Xbox 360 and Xbox One video game
consoles and Microsoft Windows PCs, will detect and record functional tests - artificial potholes 12

distanced from a car bump and road. The initial prototype will measure depth heights - distance from
sensor-bump and road. The initial prototype is intended to be “rough” prototype that will be a basic model
that can be fine-tuned. The second milestone is to develop a Functional Prototype that can be used for
Functional Prototyping. The functional prototype will be field tested on appropriate pothole-roads to
insure the quality of our GPS and pothole depth data. In the scope of design schedule, the team plans to
develop at least a functional prototype and may need further functional evaluation and Revised
Prototyping & Field Testing due to technology modification and time constraints.

4.4.2 Data Analysis Team
The DA Team is responsible for developing the technology for analysis that would determine conclusions
and recommendations. This would involve identification and classification of potholes, from the data
gathered from the sensor. DA intends to develop an integrated system that can help The City timely
receive pothole information with the GPS location and severity “level” (Low-Medium-High) of each
pothole correlates.

The main deliverable of Spring 2018 EPICS Smart City is to automate the process of detecting and
quantifying the severity of potholes:

● Using the Microsoft Kinect V2 (Kinect), (red-green-blue (RGB) depth values) needed to evaluate
road condition

o Kinect: image-processing tool used to capture photos (takes pictures of potholes and
provides RGB depth data)

● Evaluating the accuracy of these sensors in measuring depths
● Coordinating the data collected from the Kinect and ultrasonic sensor with that from GPS to

identify the location of the road surface defect
● Identifying and isolating a pothole from the database of all collected data
● Quantifying the severity of an identified pothole based on appropriate guidelines
● Creating a user-friendly GUI for end users to review the processed data
● Implement addition features to assist the city in road damage reporting
● Design and construct an arm to mount the K2 to a vehicle

Note: Past semesters attempted to implement ultrasonic sensor to complement the Kinect, but Fall 2017
opted out of this proposal (ultrasonic sensor receives only one value when the team needs “entire” values
of a pothole).

Like Spring 2017 and Fall 2017, Spring 2018 the HD Team and DA Team continues to take on the
responsibility of developing the analysis technology that would determine conclusions/recommendations -
identification, classification, and fixture recommendations - from data measured by sensors (Ultrasonic,
Kinect, and GPS). DA also continues to develop an integrated system to assist the city in simultaneously
determining severity and location of potholes . For Spring 2018, the HD and DA Teams aim to execute

12 https://msdn.microsoft.com/en-us/library/hh438998.aspx

11
Last revised 04/28/18

Design Document

Smart City - Spring 2018

what was intended in previous semesters. Specifically, the teams hope to organize previously written code
and execute the sensor with accurate GPS location services while also formatting data in such a way that
is able to be efficiently analyzed by future Smart City teams.

4.4.2 Website and Application Team
For Spring 2018, WA plans to provide an application featuring front/back-end graphical-user-interface
(GUI) that displays a map of The City with locations and severity level of detected potholes. Additional
functionality will depend on user preference and time-constraints. A website will be accessible to the city
and an application will be accessible to the public. Smart City City Pothole Application is an “additional”
functionality for the Smart City end-deliverable. The City will receive data - written/verbal complaints,
photo responses, etc.- from citizens regarding potholes and road issues throughout the city. For Spring
2018, the WA Team would like to provide the project partner with a smart-device application as an
interface to analyze citizen-feedback as well as locate and track potholes. The overall goal is for direct
users, citizens and general public, to be able to download the end-product through the Apple Application
Store and Google Play Store in order to deliver feedback through an application over directly contacting
The City. Administrative users, city engineers, road maintenance, etc., will be able to access a map of
road damage throughout city limits. In scope of the design schedule, WA plans to provide a Conceptual
Design & Initial Prototype that provides the framework for future adjustment.
The result of this project aims to be an application for both iOS and Android mobile devices. This
application will allow its users to report the location of a pothole or any other road damage, thus alerting
the city to the necessity of a repair. The city will be looking out for the most frequent areas that are
reported, as well as the most severe potholes that need to be repaired. This will allow them to access a
map on which the damage reports will be compiled. However, general users will not be able to see this
map. This allows repetitive submissions, and helps show how relevant and popular the road is in the
community. Additionally, users will be able to submit photos and descriptions of potholes observed. This
will allow the city to determine the severity of each pothole and establish whether or not the pothole
needs immediate attention.

The main project goal is to design a smartphone application that will allow users to submit road damage
reports in the City of West Lafayette. We hope to provide our project partner with an application that
meets all needs and offers the City of West Lafayette in an efficient way to make roads safer. The purpose
of this project is to assist city officials in locating potholes and other road damages by compiling the
submitted information and projecting this data onto a map of the city. By providing this interface to the
department of Road Safety in West Lafayette, it will be easy to locate and repair road damage. The WA
Team will provide the public with a platform on which they can identify and report poor road conditions
in addition to potholes. This capitalizes on all the pedestrians that travel across the town along the streets
and sidewalks. While the application users travel through the city, they are likely to observe the road. It is
our hope that they will take the time to document and report all poor road conditions that they identify
during their travels. This data will be sent to the DA Team to be compiled with the data collected from the
HD Team, thus allowing the resulting analysis to be displayed through the application by the WA Team.
This compilation of data will be presented to the project partner, thus providing a way to identify road
damage location throughout the city, the severity of each incident, and how often specific damage is
reported.

The users will be able to download the application to their mobile phone free of charge, take a photo of
the pothole, add a description, and submit this information in a common form. The data submitted from
the various users will be mapped onto an outline of the city. This interface will be available to the
application's administrator. Through accessing this map of the road damage throughout the city, the Road

12
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Safety department will be able to address the reported damage. The map will be accessible through means
of a website (HTML). 

At the end of Fall 2017, the team left a basic functioning application as well as the code to design the
application. This will allow any evolving needs to be addressed through adaptation and updates of the
application.

Spring 2018 continued where Fall 2017 left off with the same specifications in mind. Specifically, the
team is focussed on developing consistency with the application on all Android phones. The team also
worked on how to make the app robust and simple for the user, i.e. user experience. The team
brainstormed how to efficiently send data to a server that will be implemented and determine the
necessary format. Spring 2018 is working on sending data using JavaScript Object Notation (JSON),
which would allow data to be easily mirrored onto the website. As a result of thorough research, the WA
Team discovered there are many different servers that can be used for the same purpose, thus resulting in
further research to aid in deciding on which is more practical for the smooth transition of data.

13
Last revised 04/28/18

Design Document

Smart City - Spring 2018

5 Semester Documentation - Spring 2018
5.1 Team Members

Name Role

Mohammad
Jahanshahi

●EPICS Advisor
○ Advises EPICS Syllabus learning objectives
○ Technical and professional guidance

Margaret Phillips ●EPICS Advisor
○ Advises EPICS Syllabus learning objectives
○ Professional guidance

Seyedali Ghahari ●Teaching Assistant
○ Academic logistics and operations for EPICS section
○ Guidance in area of expertise - Civil Engineering
○ Assisted team in moving forward and finding resources

Erika Lin ●Project Manager - responsible for overall operation and effectiveness of team and
provides planning, direction, and guidance

●Oversee HD, WA, and DA Teams laterally
●Design Documentation – ensuring whole team is appropriately documenting

contributions and individual progress

Kartik Mittal ●App Development Design Lead
○ Oversees App design
○ Responsible for facilitating project through components of design process
○ Responsible for project planning, execution, risk assessment to deliver a quality

team end-deliverable on time/budget
●Android Application
○ Finalizing the layout of the application
○ Implementation of server and storing the data
○ Google API implementation

Kalpan Jasani ●Data Analysis Design Lead
○ Oversees Data Analysis design
○ Responsible for facilitating project through components of design process
○ Responsible for project planning, execution, risk assessment to deliver a quality

team end-deliverable on time/budget
●Data Analysis
○ Ensuring Kinect data collection (data management, error analysis)
○ Quantification of potholes

14
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Romita Biswas ●Hardware Design Lead
○ Oversees Hardware design
○ Responsible for facilitating project through components of design process
○ Responsible for project planning, execution, risk assessment to deliver a quality

team end-deliverable on time/budget
●Synchronization of Kinect Depth Data and GPS Data

Muhammad
Shorieri

●Webmaster – Update and maintain project’s website
●Learn Android Studio
●WA – GUI interface (front-end)

Rachel Lee ●WA – GUI interface (front-end)
●Documentation for the application

Khaing Thu
(Helen) Zin

●WA – GUI interface (front-end)
● Ideas for layout
●Responsible for Transition Document

Kyaw San
(Steven) Thway

●Project Archivist
●WA

Benjamin
Hutchins

●Financial Officer – maintaining Spring 2018 team budget
●HD – designing POLES mounting frame

Brian Sutanto ●HD – Voltage source for Kinect unit.
●GPS and Kinect Integration

Ethan Tan ●DA – Simplification of code by breaking into simpler parts
○ Break down code into new files/functions
○ Create breakpoints in the code to allow for easier testing
○ Advise Hardware team for data input into code
○ Improve detection algorithm

Ayyub Jose ●DA – developing a mathematical model for pothole severity quantification

Dauzhan (Don)
Yerkozhanov

●DA – Software implementation for data analysis
○ RANSAC, plane fitting, grayscale and Otsu,
○ Pothole severity quantification (bounding rectangle)
○ Reading data and outputting of severity analysis with measurements

15
Last revised 04/28/18

Design Document

Smart City - Spring 2018

5.2 Current Status and Location on Overall Project Timeline
The Project Specification, Specification Development, and Conceptual Design phases have been
completed. The Detailed Design phase is currently in progress.

Spring 2018 Smart City began the semester working on understanding and developing previously
developed hardware and software. Spring 2018 is focusing on consistent documentation of code as well as
the design process. Previous decisions made in previous semesters were reconsidered and previous issues
are to be resolved. Spring 2018 is continuing the Detailed Design phase by solving previous issues,
presenting possible improvements, and implementing new features desired by the project partner.

At the end of Spring 2018 semester, we have a hardware system that takes depth data, but has not yet
been tested on actual road conditions. There is a functioning severity analysis that has a few
discrepancies. There is also a functioning website that needs to be tested with data from data analysis. The
application is now fully functional on an Android device. However, the app needs to be tested on various
Android devices and is currently only functional for pothole reporting.

5.3 Goals for the Semester
As a continuation of previous semesters, Spring 2018 is expecting to have a preliminary deliverable
executable product. The HD team aims to be able to collect multiple continuous frames of data accurately
timestamped. The DA team aims to be able to consistently accurately analyze each frame of data. The
WA team aims to have a fully functional website displaying a map and pothole locations for the city as
well as a fully functional application accessible to the public. Spring 2018 also discovered that previous
code documentation was inconsistent and thus made it difficult to pick up where the team left off within a
reasonable amount of time. As a result, a goal for the Spring 2018 semester will be developing a two-page
manual for each team - HD, DA, and WA - such that following teams will be able to easily access and
understand where the previous team stands at the end of the semester.

5.4 Semester Timeline
Smart City SharePoint>Semester Documentation>Spring 2018>Gantt Charts:

Week Design Process Milestones Status/Notes

1 —
01/11

Introduction to EPICs ● EPICS information/outcomes overview

2 —
01/18

Project Scope Review ● Smart City information/outcomes overview
● Project roles assignment

3 —
01/25

Detailed Design ● Understand where previous semester left off
● Brainstorming and timeline generation

4 —
02/01

Detailed Design ● Individual team cost-breakdown analysis
● Team Website Update
● Meeting with project community partner

5 —
02/08

Detailed Design ● Gantt Chart Update to Advisors and TA
● Budget Analysis to EPICS Office

16
Last revised 04/28/18

Design Document

Smart City - Spring 2018

6 —
02/15

Detailed Design ● Mock Mid-Semester Design Review

7 —
02/22

Mid-Semester Design Review ● Design Document preparation and slides for
Mid-Semester Design Review/Evaluation

● Individual team testing/elaboration of available
technology

8 —
03/01

Detailed Design ● Re-evaluate project based on Mid-semester review
feedback

● Revisit Project Identification, Specification Development,
and Conceptual Design

9 —
03/08

Detailed Design ● Further design implementation

10 —
03/15

SPRING BREAK

11 —
03/22

Detailed Design ● Further design implementation

12 —
03/29

Detailed Design ● Further design implementation

13 —
04/05

Detailed Design ● Final Design Review Presentation Slides
● Design Document preparation for Final-Semester Design

Review/Evaluation

14 —
04/12

Detailed Design ● Delivery checklist, if delivering
● Design Document preparation for Final-Semester Design

Review/Evaluation
● 2-page Transition Documents for each team
● Mock Final Design Review

15 —
04/19

Final Design Review ● Slides and Presentation preparation for Final-Semester
Design Review/Evaluation

● 2-page Transition Documents for each team

16 —
04/26

Final Write-ups ● Finalize 2-page Transition Document
● Update Design Document with feedback

17 -
05/03

FINALS WEEK Design Process to be done (see Detailed Design):
● Functional Prototype (needs finishing)
● Functional Evaluation
● Revised Prototyping
● Field Testing
● Drawing Conclusions & Recommendations

17
Last revised 04/28/18

Design Document

Smart City - Spring 2018

5.4.1 Hardware Semester Timeline

18
Last revised 04/28/18

Design Document

Smart City - Spring 2018

5.4.2 Data Analysis Semester Timeline

19
Last revised 04/28/18

Design Document

Smart City - Spring 2018

5.4.3 Website and Application Development Semester Timeline

20
Last revised 04/28/18

Design Document

Smart City - Spring 2018

5.5 Semester Budget
5.5.1 Proposed Semester Budget

21
Last revised 04/28/18

Design Document

Smart City - Spring 2018

5.5.2 End of Semester Spending

22
Last revised 04/28/18

Design Document

Smart City - Spring 2018

6. Current Design

6.1 Hardware
For the Spring 2018 semester, the goal was to make the hardware system more cost effective and reliable
by focusing on implementation on a specific type of city vehicle before eventually expanding. A decision
was made to design the system with the Kinect sensor, and compatibility requirements allowed us to
choose a new Intel microcontroller . Our goal is to successfully incorporate all the hardware components
such as the GPS unit, Kinect, and operating system as a whole while also syncing the data collected with
the accurate timestamps.

23
Last revised 04/28/18

Design Document

Smart City - Spring 2018

6.1.1 Kinect
Our current device that we are using for depth data collector is Microsoft’s Xbox Kinect. This Kinect is
commercially produced for the gaming industry, specifically for Microsoft’s Xbox gaming system. The
wide angle of the flight sensor within the Kinect is used to measure the distances by measuring the time
taken by a light pulse. Even in minimum light environment, Kinect can still track objects at night through
its IR sensor. Since UV rays significantly affects the Kinect’s depth data output, we decided to run the
Kinect on city vehicles at night at the optimal distance that Kinect can easily track, i.e. up to 4.6 feet. The
depth data output will be collected at 1080 pixel resolution and 30 or 60 frame per second according to
the chosen configuration.

The benefits and drawbacks of using Kinect include:

The basic functions performed in a single flowchart are shown below:

We have decided to use the Kinect’s built-in Red Green Blue Depth (RGBD) sensor to detect depth data
in the road. To test the Kinect sensor, we built fake potholes out of cardboard then held the sensor above
the "potholes" to see if the sensor was able to detect the depth change. Using an application called
Software Development Kit (SDK), the sensor displayed a clear distinction between depths. Microsoft has
an application programing interface (API), but they provide advanced functions (facial recognition, heat
detection, etc.) that our project scope does not require. We are utilizing SDK to tap into simple Kinect
functions such as RGB image capture and depth data collection.

24
Last revised 04/28/18

Design Document

Smart City - Spring 2018

 Figure: Artificial pothole; Early prototyping Figure: Screenshot of both potholes

test of Kinect sensor. captured in one RGBD frame.

In the figure above, we can see the difference in depth from the RGBD sensor, which will be useful to the
data analysis team when they try to program a function to determine depth.

Figure: Decision matrix for deciding to use Kinect Version 1 versus Kinect Version 2.

To decide on which version of the Xbox Kinect would be optimal for the purpose of this project, a
decision matrix, as shown above, was used. In this project, we will using the RGB camera and Depth
functions built-in to the Kinect sensor. The RGB camera on the Kinect functions like most digital
cameras, i.e. grayscale color images, and the depth sensor is based on Infrared Emission . Since our final

13

product will be implemented outside, the sunlight will easily interfere the precision of depth sensor, and
thus it is critical we put our product into a relatively concealed environment, like a box or chassis. This
semester, we are attempting to use the vehicle as our box or chassis, as the main purpose is to prevent
direct sunlight.

The goal of the hardware team is to detect and save pothole data such that the DA team is able to employ
their pothole detection/quantification algorithm (see 6.2 Data Analysis). We decided to save the RGB
Image for future reference, e.g. calibration, error, data reference/benchmarking, etc. Overall, we decided
we need to save following information:

● Original Depth data from Kinect Sensor (.txt)
*Note: Kinect will be taking 1.2 MB of memory per frame. Each text file generated for each frame is
about 1.2MB . Consider this requirement for future data collection implementation into the
end-deliverable.

13 https://molspect.chemistry.ohio-state.edu/institute/bernath4-IRemissionreview.pdf

25
Last revised 04/28/18

Design Document

Smart City - Spring 2018

The following is the suggested hardware requirement listed by Microsoft to run Kinect:
The following operating systems and architectures are supported:
• Windows 8 (x64)
• Windows 8.1 (x64)
• Windows 8 Embedded Standard (x64)
• Windows 8.1 Embedded Standard (x64)
Your computer must have the following minimum capabilities:
• 64 bit (x64) processor
• 4 GB Memory (or more)
• I7 3.1 GHz (or higher)
• Built-in USB 3.0 host controller (Intel or Renesas chipset).
**USB 3.0 functionality must support Gen-2.
• DX11 capable graphics adapter (see list of known good adapters below)
o Intel HD 4400 integrated display adapter
o ATI Radeon HD 5400 series
o ATI Radeon HD 6570
o ATI Radeon HD 7800 (256-bit GDDR5 2GB/1000Mhz)
o NVidia Quadro 600
o NVidia GeForce GT 640
o NVidia GeForce GTX 660
o NVidia Quadro K1000M
• A Kinect v2 sensor, which includes a power hub and USB cabling.
**When using Kinect Fusion, Kinect can process data either on a DirectX 11 compatible GPU with C++
AMP, or on the CPU, by setting the reconstruction processor type during reconstruction volume creation.
The CPU processor is best suited to offline processing as only modern DirectX 11 GPUs will enable
real-time and interactive frame rates during reconstruction.

Software Requirements:
The following developer environments are supported:
• All Visual Studio 2012, including Visual Studio 2012 Express (Microsoft Visual Studio 2012
Express)
• Visual Studio 2013 Ultimate, Premium, Professional, and Express for Windows Desktop

*Note: Kinect’s camera is 60 frames/second, meaning the Kinect can transfer up to 84 MB of data in one
second, so each minute 5.04 GB of data can be generated. We suggest having the Kinect take frames that
“overlap” instead of 30 frames/second (optimizing the frame capture to reduce required hard-disk space).
Considering the amount of data collection per “session” (daily runs by vehicles the sensor system will be
attached to), we decided to use make a revised hardware requirement:

● 64 bit Processor
● Physical dual-core 3.1 GHz (2 logical cores per physical) or faster processor
● USB 3.0
● 8GB RAM
● SSD Hard drive (500GB+) (faster data opening and writing)

For computer operating system specification, the official SDK only supports windows 8.1+. However, we
could always use existing open source libraries and virtual machine implementation and run Kinect on
any UNIX system, like MAC OS or Linux.

26
Last revised 04/28/18

Design Document

Smart City - Spring 2018

The following flowchart depicts how Kinect interacts with the computer:

Figure: Flowchart of Kinect-computer communication

We have experimented with two programming languages: Python with open source libraries, and C++
with Microsoft SDK, which is more comparatively complex. SDK is designed for complex functions for
human-computer interactions, i.e. skeleton, motion, or eye tracking. The complexity of SDK requires
programmers to invest more time learning compared to Python. Spring 2017 had finished operating code
in Python, and thus, Spring 2018 decided to continue utilizing Python while achieving synchronization in
C++. Based on Kinect-computer communication, we are using following libraries and software:

● Python 2.7.13
● Opencv 3.2.0

14

● Libfreenect2
15

● Pylibfreenect2
16

● XCode and command line tool
17

● Terminal (pre-loaded on Mac OS)
● Kinect SDK Drivers

Initial Prototype and initial testing was performed on the following computer specifications:
● MacBook Pro (Retina, 13-inch, early 2015)
● Processor 2.9 GHz Intel Core i5
● Memory 8 GB 1867 MHz DDR3
● Graphics Intel Iris Graphics 6100 1536MB
● macOS Sierra Version 10.12.4
● Libraries and software above

The code can run on any computer with specifications:
● Libraries and software above

14 https://github.com/opencv/opencv
15 https://github.com/OpenKinect/libfreenect2
16 https://github.com/r9y9/pylibfreenect2
17 https://developer.apple.com/xcode/features/

27
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Using the following provided code, we are able to build a Kinect-computer connection. The building
process includes the following:

1. Open Packet Pipeline from CPU or GPU
2. Create Frame for future interaction
3. Create and set logger
4. Detect if Kinect device is correctly connected with computer
5. Get device serial number
6. Create Listener to receive data
7. If previous 6 steps work correctly, open Kinect device and officially build the connection

Figure: Source-code to establish connection/communication between Kinect and computer.

28
Last revised 04/28/18

Design Document

Smart City - Spring 2018

The next code will process and save the depth data, depth image and RGB image frame by frame. The
following is detailed function of following code:

1. Create and redirect the directory where data will be saved
2. Stream depth video captured from Kinect
3. Stream RGB video captured from Kinect
4. Save depth data into txt file with following naming convention: number.txt
5. Repeating steps 1-4 permanently until Keyboard interruption (at this moment, you must manually

terminate the program from running)
6. After Keyboard Interruption, stop the while loop, close the connection between Kinect, close the

program and return to operation system

Figure: test depth data saved in 512*424 array as .txt, 1.3 MB. The depth Image (9 KB) and RGB

image(731 KB) are saved in jpg file. The total size of one frame data is 2.04 MB.

In order to test how precise the Kinect is, we set up an error analysis test. The test was held on marble
ground in the EPICS labs. Note: the error analysis test may be done on any surface but the calibration
itself may be dependent on the surface material. Since the test was held indoors, sunshine and light is not
considered for our error calibration test. We set up the Kinect at 6in, 9in, 12in, 15in, 18in, 21in, 24in,
27in, 30in heights. At each height, we took three frames and calculated the stability and precision of the
data gathered by the Kinect. From our experiments, Kinect is effectively unable to get data from 6in, 9in,
12in, 15in and 18in. If a depth value is considered “invalid,” i.e. unreadable by the Kinect, then the Kinect
depth sensor will return a zero value. From 21+ in., we are able to get valuable data.

In order to get a rough idea of Kinect’s precision, we start by calculating average depth. The Kinect is
able to get 424 pixels by 512 pixels, i.e 217088 total depth data. Due to some changes in the code, we are
now able to retrieve a 1080 x 1920 HD resolution and provides a wider frame, thus more accurate values.
However, the tradeoff is a higher image size. The output text files are 14mb in size, which is an issue
moving forward. Due to reflection and other independent random variables, Kinect occasionally yields
invalid measurements. After exclusion of invalid data, we calculate the average depth and the number of
measured distance (depth from Kinect to surface).

29
Last revised 04/28/18

Design Document

Smart City - Spring 2018

The following form shows the result of average measured distance and percent of error from each test:

Figure: Sample error fitting test.

For this project, our project scope is detection and quantification of potholes (assumed normally deeper
than 0.40 inches). Comparison to an assumption of 0.4 inches, average percent of error for Kinect depth
collection is smaller than 1.67%. In the test table above we can see that 24in and 27in meet the
requirement (precision of Kinect is relatively stable within this range). We calculated the normal
distribution the data we gathered in 24 in and 27 in:

● For 24in test, 54.15% of the data fall in the range of 23.60in to 24.40in (Percent of error equals
1.67% range), and 97.70% of the data fall in the range of 23.20in to 24.80in (Percent of error
equals 3.33% range).

● For 27in test, 55.96% of the data fall in the range of 26.60in to 27.40in (Percent of error equals
1.67% range), and 98.57% of the data fall in the range of 26.20in to 27.80in (Percent of error
equals 3.33% range).

*Note: We suggest that, end-deliverable should be installed within this range (24in to 27in) for accurate
data collection.
A test Kinect housed in a sealed box to reduce light influences took measurements calibrated at 25in:

Figure: RGB image for pothole detection test

30
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Figure: MATLAB adjusted RGB image based on depth data; first: top view of depths; second:
front view of depths (vertical axis: depth, horizontal: width)

It was decided that since the amount of data generation was a big data issue that rgb images would be
destroyed upon generation of the depth data text files to minimize any unnecessary files and reduce
processing speeds of the python code in order for the desired fps to be achievable. Spring 2018 iteration
decided to remove the RGB function and collect only depth data text files. Data Analysis team did not
require RGB data either, so it was best to focus on collecting depth data text files continuously. The
kin1lite.py code was manipulated to do so. Currently the data is collected at a set rate of 20 fps but it can
be manipulated based on the vehicle speed and amount of necessary overlap.

As mentioned above, the Kinect sensor data is influenced and changed by the sun’s UV rays. According
to the design in Fall 2017 documentation, they were using only one single Kinect attached to the bumper
of the truck shown in figure below.

Figure: Field of view with one Kinect implemented.

One Kinect limits the field of view to a minimal and limited area, thus unable to gather data on the entire
road area. After calculations of the Kinect field of view relative to the Kinect height and road area, we
concluded that implementing three Kinects would be the most effective for gathering thorough data. The
figures below demonstrate the area in which multiple Kinects will cover:

31
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Figure: Field of view using three Kinects.

.
Figure: Field of view using two Kinects.

Figure: Field of view using three Kinects.

The Kinect housing system was built to house all the hardware and block the sunlight’s interference with
the Kinect sensor. The box is to be constructed of a lightweight polymer with a flexible curtain of rubber
wrapped around the base. However, Spring 2018 has decided that this prototype would be an inefficient
way to collect data with such a large model, which may also result in slow gathering of data. Therefore,
we are no longer pursuing the Kinect housing system and will be implementing the Kinect beneath the
city vehicle, as if the vehicle itself acts as a housing system as shown in the figure above.

See 6.1.4 Addressing the Issue of Direct Sunlight for more information.

32
Last revised 04/28/18

Design Document

Smart City - Spring 2018

6.1.2 Raspberry Pi
In Fall 2017, the Hardware team planned to use the GPS and Kinect to integrate both the systems on a
shared microcomputer Raspberry Pi 3. The latest version, Raspberry Pi 3, is more efficient in terms of
speed and memory. However, with the Raspberry Pi 3, we will only be able to operate the first version of
Kinect instead of Kinect v2 that we were using in the semester of Spring 2018. Since the new Kinect v2
offered higher resolution output, it required a higher specifications in the Operating System. Therefore,
we decided to use the microcontroller from Intel to run the Kinect.

Figure: The Raspberry Pi assembled with Screen

Specifications of Raspberry Pi 3:

- SoC: Broadcom BCM2837
- CPU: 4× ARM Cortex-A53, 1.2GHz
- GPU: Broadcom VideoCore IV
- RAM: 1GB LPDDR2 (900 MHz)
- Networking: 10/100 Ethernet, 2.4GHz 802.11n wireless
- Bluetooth: Bluetooth 4.1 Classic, Bluetooth Low Energy
- Storage: microSD
- GPIO: 40-pin header, populated
- Ports: HDMI, 3.5mm analogue audio-video jack, 4× USB 2.0, Ethernet, Camera Serial Interface

(CSI), Display Serial Interface (DSI)

33
Last revised 04/28/18

Design Document

Smart City - Spring 2018

6.1.3 GPS
For the Spring 2018 HD Team, the goal includes collecting GPS data (capture time and latitude/longitude
coordinates) for potholes detected and quantified by 6.1.4 Data Analysis. GPS data could tell our
stakeholders the location of potholes and be given recommendations on which roads to fix.

The Fall 2017 GPS sub-team’s first goal was to choose a sensor that is small, portable, but more
importantly, weatherproof. GPS sensor will most likely be placed on the outside of a vehicle (despite
plans for housing), so a non-weatherproof GPS unit would most likely break. We chose Adafruit Ultimate
Breakout . Adafruit Breakout can be used through a USB port while Internet connection is not needed

18

(continue receiving data when the vehicle is running). Data collection can be synchronized based on 6.1.1
Kinect (to optimize and minimize data collection). We will be executing the GPS on Raspberry Pi 3,
which has a Linux system, but we can also run the GPS on Mac OS-X and Ubuntu.

Figure: Adafruit Ultimate Breakout GPS

18 https://cdn-shop.adafruit.com/1200x900/746-13.jpg

34
Last revised 04/28/18

Design Document

Smart City - Spring 2018

The specifications of GPS system and Raspberry Pi are as follows:

Specifications:

1. Hardware Specifications
19

- Size: 1 x 1.4 x 0.3 inches and Weight: 0.3 ounces
- -165 dBm sensitivity, 10 Hz updates, 66 channels
- 5V friendly design and only 20mA current draw
- Breadboard friendly + two mounting holes
- RTC battery-compatible
- Built-in datalogging
- PPS output on fix
- Internal patch antenna + u.FL connector for external active antenna
- Fix status LED

2. Software (Raspberry Pi integrated specifications)

- Linux environment on Raspberry Pi 3
- Code is on Python 2.7.1, which gives output in a text file
- Does not require internet to work
- Outputs 1 data point (position and time) per second
- Can take 20 seconds to 15 minutes to find a fix (at least 3 satellites), but when facing a clear sky,

it finds a fix in generally 7-10 seconds

3. Instructions to access the code for GPS

- The code is currently both on Raspberry Pi and Sharepoint too
- For Raspberry Pi, the code can be found on the location: Pi>Home>gps>gpscode1.py
- Some sample tests (GPSTest1, GPSTest3) are also available in the same folder
- These documents are available on Sharepoint under Project Documentation too

Data will be automatically collected in a “.txt” file after starting the code (data store locally to a specified
hard-disk location). We found a source code to run the GPS, which was modified to limit the output fields
to just latitude, longitude and timestamp.

19
https://www.adafruit.com/product/746?gclid=CjwKCAiA9f7QBRBpEiwApLGUio5zkULI2DUHdHUMpp68_czMz
6bQ8KWUcdLUZdYN6SmXhizpIizf1RoC0O4QAvD_BwE

35
Last revised 04/28/18

Design Document

Smart City - Spring 2018

The following image shows the modified code:

Figure: code for gps data collection

Fall 2017 was unable to run the GPS outside, hence the above code output only a stream of timestamps,
which can be seen in the figure below. When tested outside, the GPS will output latitude, longitude and
timestamp data, an example of which (at one timestamp) is also shown below.

Figure: Time output in text file and all fields data for one timestamp

Spring 2018 picked up where Fall 2017 left off. We discovered that two files of code existed for the
Kinect 1 and Kinect 2 as the previous semester attempted to execute both to decide which would be more
efficient. We have decided on further developing the Kinect 2. Thus far, we have primarily focused on
documentation of code since deciphering previous semesters’ code was inefficient.

36
Last revised 04/28/18

Design Document

Smart City - Spring 2018

In order to run the GPS it had to be connected to the microcontroller through the Raspberry Pi since the
GPS was only compatible with the Raspberry Pi, so the NUC microcontroller and the Pi are connected
through a server so that the NUC can extract GPS data onto the microcontroller and have the same clock
time to ensure synchronization of the data. A different GPS that is compatible with windows will have to
be chosen so that extraction is easier. An issue with the current method of extraction is that a shared IP
address is required meaning that an internet connection is required at all times which is not viable with the
current prototype. However a server system may be the best to pursue since the data generated could be
sent to a server in real time.

6.1.4 Kinect Mounting System

Figure: current design for the three Kinect 2 system covering a full lane of road.

The previous semesters came up with a design to attach a housing compartment for the mounting system
to attach to the back of a car. This idea was chosen to prevent sunlight from interfering with the device.
Through conversations with our project partner it was determined that we could run the device at night
where this would not be a problem. The design that the hardware team has chosen as a potential design
for future semesters is to attach a system of three kinects in order to cover an entire lane of road. This was
chosen since for this semester we are focused on attaching the device to garbage trucks and not small
vehicles. The two potential locations of the frame to attach the device is the middle frame of the truck and
the front frame of the truck. The most ideal place to attach the device would be in the front near the
engine since we would be able to power our device from the battery of the car. This current design
doesn’t account for a compartment that is needed to store the GPS, Raspberry Pi, and storage. An obvious
way to attach this device to the frame would be through screws; however, there is a concern that drilling
into the frame could damage the structural integrity of the frame. this semester we are just focused on
getting one kinect to function properly.

Kinect Angle and FPS Calculations
Several calculations were done to determine the ideal angle of the potential 3 kinect system as well as the
frame rate that the code must run in order to thoroughly capture the road conditions. The team used
geometry to calculate the angle of the kinect, with the height off the ground being 2.5 feet and the
distance from the outside tire to the frame being 2.625 feet. We then used the Kinect’s viewing angle of

37
Last revised 04/28/18

Design Document

Smart City - Spring 2018

70 degrees. The results that we found were that the outside kinects would have to be angled at 20.41
degrees from the horizontal to cover a full lane of road (assuming that the average lane width is 10 feet)
and found the angle to be 11.40 degrees to viewing just under the truck

The next set of calculations done were to determine the frame per second that the code must run to collect
sufficient data based off of the height, viewing angle, and speed. For typical garbage truck operations, it is
recommended that the code is ran at 20 frames per second.

Figure: This figure shows the minimum frames per second that the code must run so that the frames

overlap at various speeds.

Engineering Drawings
From our project partner site visit we measured the height off the ground of the frame to be two feet six
inches. From this information we found out that if we attached the kinect vertically on the frame it would
not cover the width of the truck or of a lane. From this information we determined that we would need to
angle the kinect. We also determined that we would need three kinects to cover an entire lane as shown in
the CAD drawing. Shown above are the dimensions of the triangular piece designed that would go on the
frame. Regarding the material of this component, two materials we considered were PLA or ABS plastic
and 6061 Aluminum. We determined that using a three-dimensional (3D) printer to create this part would
be preferable as it would be more difficult to machine the angle on a mill with precision.

38
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Figure: Drawing of the triangular piece of the mounting system

Figure: Dimensioned view of the assembly with the Kinects attached

Utilizing Natural Shadow from Vehicle
After much research and deliberation, Spring 2018 decided to forgo this idea and instead use the shadow
of the vehicle to block out direct sunlight as the overall goal is to implement the sensor beneath the city
vehicle. For Spring 2018, we decided to pursue the design with a specific city vehicle, i.e. garbage trucks.

39
Last revised 04/28/18

Design Document

Smart City - Spring 2018

6.1.5 City Vehicles: Garbage Trucks
Spring 2018 decided to implement a design such that the sensor would be placed beneath the truck using
the vehicle shadow in place of the previously implemented box. Another option is that we can mount the
Kinect onto the front bumper, since they have holes and spaces that would allow us to install the
mounting system easily. After the project partner visit, we learned that there are various types of garbage
trucks and constraints to how the device is permitted mounted on the vehicle itself. Below are images
from the project partner visit, displaying the different types of garbage trucks available:

These city garbage trucks all have different features and dimensions, and we concluded that there is no
one solution that would be applicable to all three. Thus, we decided to construct our design off of one type
of garbage truck - Garbage Truck 3. Below are images of this garbage truck:

40
Last revised 04/28/18

Design Document

Smart City - Spring 2018

City Garbage Truck Specifications
● The garbage truck that was chosen to base the design off of is a 1996 model and has a height of

roughly 11 feet with a width of 8 feet.
● The frame in the middle and in the front is 2 feet 6 inches off of the ground.
● The frame is 2 feet 7 ½ inches from the outside of the tire on both sides. The frame has two pieces

that come down on each side that are 2 feet 9 ½ inches apart. The frame component is 3.5 inches
wide.

6.1.6 Intel NUC7i7BNH Microcontroller
Spring 2018 has decided to purchase a new microcontroller designed by Intel to improve speed of data
processing. Intel NUC7i7BNH is also proven to be compatible with Kinect 2 after research from different
forum pages and comparing the specifications of the microprocessor and the system requirements for
Kinect 2. The feature for Intel NUC7i7BNH is listed below:

● Intel Iris Plus graphics
● Intel Optane memory
● Thunderbolt 3
● HDMI ports
● Support for 2.5” drives
● Intel Dual Band Wireless (802.11ac) and Bluetooth 4.2
● 4 USB 3.0 ports
● Intel Gigabit LAN
● Micro SD card slot

However, to run the Intel NUC and install the operating system into the microcontroller, we still needed a
DDR4 SO-DIMM RAM and a 2.5” SATA SDD. As a result, we purchased Samsung 960 PRO Series -
512GB PCIe NVMe - M.2 Internal SSD (MZ-V6P512BW) as our memory storage drive. For RAM, we
purchased Samsung 16GB 2133 MHz (M471A2K43BB0-CPB) for our RAM card or physical memory
module.

41
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Figure: Intel NUC7i7BNH (left), Samsung 960 PRO Series - Internal Solid State Drive with PCIe

connection (right)

Figure: DDR4 RAM Samsung 16GB 2133 MHz

Once we have set up the microcontroller, it will be operating with the Kinect as well as the GPS to
synchronize all the collect data with the correct time stamps. The critical task of the microcontroller is to
match up the depth data which will be collecting at 60 fps and GPS at 10 fps with the appropriate time
stamps. The details of the synchronization process can be explain with the following flowchart:

42
Last revised 04/28/18

Design Document

Smart City - Spring 2018

6.1.7 Final Design Review Comments/Reflection
● Address/further research difficulties in synchronizing three Kinects

○ Angles Kinects? Overlapping?
● How do you account for the motion of the vehicle?
● Address why there would be a difference between the different city vehicles.

○ At next project partner visit, measure and gather information regarding exactly why they
are different.

● Would the system require any action on the part of the vehicle operator?
● How to handle acceleration: maybe explore using accelerometer after system works.
● How to keep lens clean during operation
● Can UV filters be used to allow daytime use?
● How to connect to battery safely, even if temporary?
● Address big data issues.
● Address how the tradeoffs are right for the project specifications: mention project partner needs

parallel to the design.
● Address why the housing was eliminated and reasoning behind that decision.
● Using edge processing to minimize big data?

6.1.8 End-of-Semester Summary
We have completed significant commenting and improvement of the code. The code outputs a

continuous stream of depth data. Currently it is at a fixed fps that can be changed manually, but the
calculations are given for the next semester to implement a variable fps depth collection. We also found a
microcontroller that was compatible with the Kinect 2 and have prepared it to be completely operable
with the kinect code. The GPS we currently have is only compatible with the Raspberry Pi, but a different
GPS whose data can be extracted can easily be used. Currently we access the GPS data files from the
microcontroller through a server which requires a shared IP Address. The major issue we had was
transitioning from the previous semester as no transition document was given for the kinect code, so we
prepared a very detailed transition document for the next semester for all of the components of our
system. Romita’s Notebook shows what are the next steps and ideas for what to do the next semester to
improve the code and manipulate it to operate at a variable fps.

43
Last revised 04/28/18

Design Document

Smart City - Spring 2018

6.2 Data Analysis
The primary role of Data Analysis is to take the input offered by the hardware team, and then process it,
and finally pass it forward.

6.2.1 Requirements:
The Data Analysis team is responsible for:

1. Accepting hardware team’s input
2. Developing and maintaining code to perform analysis
3. Detecting whether potholes exist
4. Determine severity of pothole

a. Identify one pothole in multiple images (Image tracking)
b. Analyze distortion of a pothole

5. Pass the output to a server
6. Prepare a transition for the next year’s team

6.2.2 Overall Data Analysis Process

Figure: Context of the team

The data analysis team takes input as text files from the hardware team, processes them, and provides a
smaller data of the frames with the potholes for further display.

Figure: Overall process of the Data Analysis team.

Our flow chart demonstrates how our code continuously reads the data that Kinect captures (given by
Hardware team), until the last file is read.

44
Last revised 04/28/18

Design Document

Smart City - Spring 2018

6.2.3 Current Method Adopted by the City

In the United States, various road surface condition inspection guidelines have been developed by various
regulatory agencies. The City of West Lafayette currently uses the Pavement Surface Evaluation and
Rating (PASER) Manual developed by the Transportation Information Center at the University of
Wisconsin-Madison. This approach rates road conditions from a 10 (excellent) to a 1 (failed) and takes
into account four factors: surface defects, surface deformation, cracks, and potholes/patches. But, potholes
are only relevant for 3 of the 10 levels. We discuss the approach for severity that we take, in later
sections.

6.2.4 Our Intended Approach

The task of our team is to automate the entire process of detection and quantification of the severity of
potholes.

Our advisor, Jahanshahi, had readily available resources to develop an algorithm automating
road-pavement defect detection and quantification (Unsupervised Approach for Autonomous
Pavement-Defect Detection and Quantification Using an Inexpensive Depth Sensor) :

20

The steps to be taken for this algorithm are:
1. Fit a plane to raw depth data using random sample consensus (RANSAC) algorithm.

21

2. Subtract values from fitted plane to get a matrix of relative depth
3. Use Otsu’s method to find a threshold value to define the pothole’s location in the frame

2223

4. In the depth matrix, utilize the information available using Otsu’s binarization to further
determine the severity.

From this, we adapted to create a procedure which is depicted in the figure below.

Figure: Figure explaining the process adopted for processing

20 http://ascelibrary.org/doi/abs/10.1061/(ASCE)CP.1943-5487.0000245
21 https://www.mathworks.com/discovery/ransac.html
22 http://www-cs.engr.ccny.cuny.edu/~wolberg/cs470/doc/Otsu-KMeansHIS09.pdf
23 https://www.mathworks.com/help/images/ref/graythresh.html

45
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Note: Our entire implementation is done as a Python program. The location can be found below in the end
of the section.
6.2.5 Plane Fitting
Why plane fitting?
With plane fitting, we define the road in our data. The road is a plane, and we then find the depth of other
pixels, relative to this “road”.

We have implemented the RANSAC (Random Sample Consensus) algorithm for plane fitting in Python.
Our plane fitting code is modified from that developed from a third party person, whose code and
explanation was available on Github . 24

Here are some of the images that explain the results from plane fitting.

Figure: Pothole image 13_130 and its corresponding depth data from Kinect

Figure: Plane fitted to original depth data

24 https://github.com/minghuam/point-visualizer/blob/master/point_visualizer.py

46
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Figure: Normalized data

Note that in the last figure, the values are about 80 mm. The z value represents the depth at that x and y
location. Due to calculation of relative depth, we now have a depth value that is relative to the level of the
road.

The code where we implement plane fitting is in the file leastSqCoefficient.py We have commented this
file to explain the different aspects of the code.

A reference for RANSAC is: http://www.cse.yorku.ca/~kosta/CompVis_Notes/ransac.pdf

Steps:

↳ Make a collection of all the points (pixels) that are a certain distance away from the pre known
distance of the road. For our data, we kept this distance of 780 mm. Say we call this set S, for
“set”. We will only fit a plane using this S, and not the other points in the frame.

↳ Choose a certain number of points from this set S. This subset should be representative of the
entire set S. To do this, we can randomly select points, or select points at in jumps, so as to select
the whole frame in some sense.

↳ Choose the “threshold”, the “tolerance” and the “number of iterations” for the RANSAC
algorithm

↳ Perform RANSAC for plane fitting on this set of points. We will obtain a plane, given by its
equation.

↳ Get relative depths from the plane.

Some design choices:

1. Selecting a sample of points from all the points in set S discussed above.
a. Choose random set of points: Say you want to choose 1000 points. We can obtain 1000

random points.
b. Choose points at certain jumps: By jumps we mean gaps in the frame. To see why this is

better, imagine a case when random sampling does not provided a good result. For
example, if we pick lot of points from one area, and that area is slightly depressed in the
frame, our results could be affected. If we have points at regular intervals, we can obtain
a better representation of from all the points available. That is, the data is evenly
distributed.

47
Last revised 04/28/18

http://www.cse.yorku.ca/~kosta/CompVis_Notes/ransac.pdf

Design Document

Smart City - Spring 2018

We chose to go with the first approach as that is easier to implement and does not impact
(hopefully) the representation of the road when the number of points to be picked are a large
amount. But remember that the second approach isn’t necessarily better.

Points to note:

- We also have to set all points that are a certain distance from the plane, to be 0. This helps
remove noise from the data. This is as prescribed by the research paper we use for our project
(Unsupervised Approach for Autonomous Pavement-Defect Detection and Quantification Using
an Inexpensive Depth Sensor).

25

6.2.6 Otsu’s Binarization
Otsu’s is a method to divide the data set into two parts. In application to our project, it uses the frequency
distribution of the depth to find the threshold to differentiate the two parts of the image. These two parts
are:

1. Road
2. Pothole

Figure: Demonstration of Otsu’s method

Assume we have a frequency distribution as given above. The depth values are all from 0 to 1, as they are
normalized, or they are all relative depth values to the maximum depth in the frame. As can be seen, there
will be a high frequency for the category of depth value of 0 to 0.1. This makes sense because there will
be a lot of points that are of the road. Otsu’s method will result in one depth value that will differentiate
the set of points.

25 http://ascelibrary.org/doi/abs/10.1061/(ASCE)CP.1943-5487.0000245

48
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Figures: Relative depth(left) and result after Otsu’s binarization(right)

The left figure is showing a thematic representation of the depth values in the image, after plane fitting.
The right image represents the “output” after we get a depth from binarization. As can be expected, we
can clearly differentiate two distinctly different parts in the left image, and that results in Otsu’s
binarization in the right.

The white areas represent depressed region. After we have received this information, we have a clear
pothole outline obtained from Otsu’s binarization and we are able to move on to defect quantification.

6.2.7 Quantification of Severity
We designed several approaches to quantify the severity of the potholes. According the paper of Professor
Jahanshahi that we follow for plane fitting and Otsu’s, there is a scheme for quantification of the severity
of the pothole. This was actually attempted during the first semester of this team. But, for the semester of
spring 2018, in continuation from the Fall 2017 projet, we adopt the rectangle bounding scheme for
quantification of the severity.

Note: There has been significant variation and choices in the past semesters on choosing a good model for
quantification of severity.

In the end, we aim to give results based on standards provided by an established organization. For this, we
researched on the following available.

Discussion of Standards:
1. PASER rating: This is adopted by the city for manual inspection currently. This is mentioned in

the section “Current method adopted by the city”.

We needed a way to classify potholes alone, rather than the general condition of a road. We found two
alternative guidelines for pothole quantification (in terms of its width and depth) from:

2. the U.S. Department of Transportation Federal Highway Administration (FHWA)

49
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Maximum Depth of Pothole
[mm]

Minimum plan dimension
[mm]

150

< 25 Low

25 - 50 Med

> 50 High

Table: Pothole severity as defined by FHWA .
26

3. American Society for Testing and Materials International (ASTM):

Maximum Depth of Pothole
[mm]

Average Diameter of Pothole
[mm]

100 -
200

200 -
450

450 - 750

13 - 25 Low Low Med

25 - 50 Low Med High

> 50 Med High High

Table: Pothole severity as defined by ASTM International .
27

Based on ASTM standards, to be able to quantify how severe the pothole is, we require the average
diameter of the pothole and also the maximum depth of the pothole. After compensating for any errors,
the maximum depth of the pothole is obtained using the smallest value in the depth array.

Determining Average Diameter:
One approach for calculating the average diameter is to calculate a minimum bounding rectangle for a
pothole, and use the length and breadth to get the average diameter of the pothole.

Minimum Bounding Rectangle
In our python codebase, the findContours method is called on the binary threshold of the pothole. This 28

will give us a contour of the pothole, which is a curve joining all continuous points. Now, we would need
to fit a minimum bounded rectangle, which considers the rotation of the rectangle as well. We can use
function cv2.minAreaRect() which will return a 2D box structure containing the center, width of pixels, 29

height of pixels and angle of box rotation.

26 https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/ltpp/99168/99168.pdf
27 http://www.oregon.gov/ODOT/TD/TP_RES/ResearchReports/AsphConcertePatch.pdf
28 https://docs.opencv.org/3.3.1/d4/d73/tutorial_py_contours_begin.html
29 https://docs.opencv.org/3.1.0/dd/d49/tutorial_py_contour_features.html

50
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Now, we will convert from pixel units to real world units. We already have the horizontal field (an angle),
vertical field (an angle), resolution (number of pixels on each dimension) and the height of the Kinect.
This is pre given to us when were working on sample data provided by our professor (see note). Obtaining
the length of one dimension of the image, l can be done by using formula:

l = 2h tan(⍺/2)

h = height of kinect, ⍺ = vertical field or horizontal field.

Note: Even in our project we suppose that we will have a fixed height of the Kinect.

After obtaining the length of both sides of the image, we divide the length by the number of pixels in the
image to obtain the size of the individual pixel. As we know the width and height of the pothole bounded
by the rectangle (in units of pixels), we multiply it by the individual pixel lengths to obtain the actual
length of the rectangle. To obtain the average diameter of the pothole, we add up both of the lengths and
divide it by two.

The severity of the pothole is then evaluated using if-else statements based on the ASTM pothole severity
table in the image below

Maximum Depth of Pothole
[mm]

Average Diameter of Pothole
[mm]

100 -
200

200 -
450

450 - 750

13 - 25 Low Low Med

25 - 50 Low Med High

> 50 Med High High

Table: Pothole severity as defined by ASTM International .
30

30 http://www.oregon.gov/ODOT/TD/TP_RES/ResearchReports/AsphConcertePatch.pdf

51
Last revised 04/28/18

Design Document

Smart City - Spring 2018

We are also able to determine if the depth image contains a pothole or not by using the maximum depth
and average diameter. If the average diameter is less than 100mm and the maximum depth is less than
13mm, we can consider it not a pothole by ASTM standards based on the ASTM severity table above.

Important: This is a crude way of telling whether a pothole exists. We can definitely come up with better
designs for determining whether a frame contains a pothole or not. Some designs that we looked at:

1. Before performing binarization, we find the maximum depth, and if that is too little (< 13mm),
we can say that the frame does not contain a pothole)

2. After doing Rectangle bounding: Use average diameter and maximum depth to say if there is a
pothole.

Difference in approaches Before binarization After rectangle bounding

Processing time of program We can save processing time We perform this check in the
end

Accuracy
● False positive: Detecting when

there isn’t
● True negative: Not detecting a

pothole when there is a pothole

Lesser Higher

Figure: Table for comparison of approaches on answering the question of whether a pothole exists.

6.2.8 Visualization and testing of implementation
We utilized a software called Tracker to measure pothole dimensions. This is for the sole purpose to test
our Rectangle Bounding algorithm. The testing for the pothole below gave a matching result. The figures
below are screenshots to show the working on Tracker software. Again, while Tracker is not important for
the objectives of our team, it was a tool to accurately tell different lengths in the manual measurements we
took.

Figures: Measurement of the pothole

52
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Figure: Screenshot taken from the software for reference

6.2.9 Location of execution of program and data transfer
An important issue is:

“The speed of the data analysis program is slow, while data collection is done in real time.”

Therefore, we cannot process each file in real time. We need to store the data from the hardware team.
This made us decide on the following options on running our program.

 Running on a server Running on
Microcontroller

Running on facility

Maintenance (1-10) 7 9 5

Data transfer across network
(1-10)

2 8 8

Storage (1-10) 4 4 4

Speed of processing (1-10) 9 3 7

Total 22 24 24

Rank 1 2 2

Table: Decision matrix behind the choice of place of program execution

53
Last revised 04/28/18

Design Document

Smart City - Spring 2018

6.2.10 Location where our code can be found and tested
Our current, most up-to-date python code integrating all of the functions to receive and analyze an image,
can be located in https://github.com/Kalpan-Jasani/SmartCitySpring2018. Do look at the README.md
file to further utilize the same

6.2.11 Data Tracking
An important aspect of this current semester was to develop and image tracking software that could
identify the pothole from video data. It was important to get isolated data and get the perfect pothole
possible. The current program is iterative. You input one image or a sequence of images and its it
calculates the severity of those potholes frame by frame. If you have a sequence of pothole it has no
identifier and treats each image of the pothole as a separate entity. Pothole data will obviously be
sequenced between frames when u are capturing data at 20 frames a second in a moving car , the data will
be segmented and you will be calculating the same pothole many times and different incomplete segments
of the same pothole. This was a main side task this semester and it was important in moving the project
forward.

6.2.12 Current Approach
There is not actually a current approach right now and this is something new we are currently testing. We
hope to have a prototype at the end of the semester. Having a prototype will be a good foundation for the
upcoming semesters.

6.2.13 Our Methodology
The goal is to create a video tracking algorithm that can identify, track and isolate a pothole in a video file
or a sequence of images. The data we get from the hardware team i a sequence of both depth images and
jpeg files. Tracking can occur using either data but at the moment we have the image processing
techniques to detect a pothole using depth data, we would have to create a whole new algorithm to detect
potholes using RGB data. Detecting pothole from RGB is less accurate than using depth, you can get the
same results but there is more room for error. I initially planned to use depth data as the basis for my
tracking but i decided to make the switch to RGB.

6.2.14 Contour Tracking

Why Contour? From Ayuub Jose’s Senior Design Project

Contour tacking is a way to track and detect movements object movement in a cluttered environment. The
Condensation algorithm seeks to solve the problem of estimating the conformation of an object described
by a vector. This method of tracking uses the boundary contour of a moving and deforming object in a
sequence of images. In the first instance, the contour of the object is obtained in the first frame, for us this
is the pothole. Once, a rough contour of the desired structure is available on the first image of the
sequence, the system automatically outlines the contours on the subsequent images at video rate. Contour
based Object tracking is useful in many areas such as motion based recognition. Contour tracking should
work here, our pothole is a road deformation, after we carry out plane fitting and Otsu’s Method on the
depth stream, the pothole is defined as a contour. With the algorithms’ predictive nature, this should
theoretically be the right approach. Contour tracking is very good for well defined shapes, and it works
well with edge detection software, which is key in separating the pothole from the road.

With thresholding we will extract the pixel of the pothole from its background.

54
Last revised 04/28/18

https://github.com/Kalpan-Jasani/SmartCitySpring2018

Design Document

Smart City - Spring 2018

Above is the general function for thresholding(T), where (x and y where the coordinate) pixel coordinates
nad f a global function. They can all be used in tandem or each part separately depending on how apply
the thresholding.

There are three main ways for thresholding: Global Thresholding, which uses valleys in the histograms of
pixels, Fixed Thresholding, where a fixed point is used, and Optimal Thresholding, where you find the
intersection of two different peaks.

It was important to look at the benefits of each thresholding method and pick the best one that could fit
the project’s needs. From the get go, Global Thresholding was not going to work as Global thresholding
works well for bimodal histograms, which are histograms with 2 modes (2 peaks) and the threshold value
is the lowest point in the valley between the peaks. My pothole histograms have only one peak so there is
no valley to choose between peaks.

To the left is a histogram of out pothole for testing and on the right is a histogram that uses global
thresholding.

In my program, I use a mix of fixed thresholding and optimal thresholding.. Histogram shapes are not
always reliable for threshold selection when peaks are not clearly resolved. – A “flat” object with no
discernable surface texture,and no colour variation will give rise to a relatively narrow histogram peak,
which is a good description of a pothole. So we used otsu’s method to isolate the pothole. Otsu’s
methods works differently here than it does in depth as explained in the sections adobe. When using depth
data, you have a 3D representing information, so the data can be visualized with a mesh function. With
Otsu’s depth data, it is an easy differentiation since you already know what value is the ground and the
potholes. With RGB its based on finding the threshold that minimizes the weighted within-class variance.
which is the same as maximizing the between-class variance, the calculations operates directly on the
gray level histogram [e.g. 256 numbers, P(i)]. • I’ve used it with considerable success in “murky”
situations.

55
Last revised 04/28/18

Design Document

Smart City - Spring 2018

These are the calculations for getting the threshold value which is based on the total variance of the
pixels. When using other programs this may have to be written up or modified but when using matlab you
can calculate this value with ‘graythresh’ which is what I did in the program.

Object Tracking
For image tracking, I initially wanted to approach the program using foreground detection. With

the input of the binarized image I can initialize that the background is anything false and only logic values
of true are the pothole. Then using MATLAB video tool i can find the potholes in the video file then have
a centroid to isolate and count the number of potholes. This method can be applied in future semester
when depth video data can be collected

For image tracking I tried using the same function used for the single frame. I made a step
function that tried to locate a pothole in each frame, then when it was able to fit the centroid within the
field of view it would count how many centriods where in the data file and that would be the number of
pothole. So it was important for me not to remove small centroids that factored as noise. i was able to
make an alpha that counts the uses my pothole detection code and applies it ot video and coundts the
centriods found in the image and identifies them as the pothole. I have run into problems that were not
encountered in single image processing. It does find the pothole centroid bu there are no more
unidentified centroids that just seem to come at random.

56
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Results

The pothole shown above is a good example of what I spoke about before. I have three images; at the
bottom the original pothole image and two different phases in testing.The program works decently well
here; in the first image to the left as it had identified the region where it thinks a pothole is but cannot
really detect the edges, though it cannot detect the other pothole in the image. I made some changes and
added a centroid to add proper definition to the pothole. In the image to the right it has been able to fill the
pothole with red and i was able to draw the centroid though they data is more sensitive this time round, it
can detect the pothole in the background but a lot of additional information was added, it's now very
sensitive to cracks and the shadows in the far end of the picture. This pothole would rank as very severe
on the astm and even with processing through depth those tiny cracks would also affect the information
gotten.

57
Last revised 04/28/18

Design Document

Smart City - Spring 2018

I should have added a function to remove centroids below a certain size to make the data more clean cut..
Ignoring the data marked as red at the top of image should be taken into account as it is the dark
background of the picture.

I am making somes assumption that a reason for error is due to the angle at which the picture is taken and
the problems with lighting. Our pictures/video is taken at a 90 degree angle so i do not expect these
problems to persist though more testing is needed. More work is needed on thresholding as at this
moment it was manual and I had to looks at the histogram to provide a range of values.

Here is a good example of the centroid working well in this test image, this image is controlled testing
and seems to be a man made deformation, it is good we get perfect values here because the regions are
well defined

58
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Here is another test case, with the actual pothole above , the image to the left was my initial test case,
while the image to the right was with some changes and adding a centroid. I was able to detect the pothole
a little bit more but here the program is a lot more sensitive and is detective smaller cracks that i deem
necessary. It would be important to add function to remove centroids below a certain size and the team
next semester should work on that. Also i have noticed that is there isn't enough of a distinct connection it
will create esperate boxes, the pothole above is one but there is a noticeable gap between the two hole
which is why the two largest centroids are quite separated.

59
Last revised 04/28/18

Design Document

Smart City - Spring 2018

As the program evolved the potholes above most latest results , as you can see it does identify the pothole
region and draws the centroid that fits that shape

Above is another piece of testing that had some success , it could identify the cracks you see in the picture
to the left but there is some information missing,

60
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Above is a test case that ended in failure, the image to the left is the original and you can notice the
potholes but when ran through the algorithm it thinks there are two potholes and thinks the right is a
pothole. It is a strange error because the pothole and the surface have completely different intensities and
it is quite visible from the picture how different the regios are. The test cases above had potholes that
didn't looks all that different from the ground surface.

61
Last revised 04/28/18

Design Document

Smart City - Spring 2018

6.2.15 Final Design Review Comments/Reflection
● Delete unnecessary files as much/early as possible to eliminate big data issue
● Possible to use a partim of Otsu’s method to detect likelihood of pothole to determine quick first

step on frame importance?
● For plane setting, is there an accuracy setting? Or does it only consider changes in mm?
● How often do you need to collect data to be effective? How long does it take to move from one

view frame to the next? Maybe use GPS to determine distance change?
● Break project down into phases that can be delivered.
● How does plane fitting react to differences in road or changes in camera height?
● Would be nice to see pothole image alongside heat map and binary.
● How long would it take to process one day of data; are multiple processors needed? Can you filter

and only analyze frames that have a pothole? (<1fps analysis rate)
● More clarity in decision making process: add more clear weighted decision matrices.
● How do you account for the motion during impacting a pothole and variable surfaces?

6.2.16 End-of-Semester Summary
We have covered the following this semester:

- Commenting of code in the file dataAnalysis17.py: We significantly update the code, and have it
in the “master” branch of the github repository. You can clone the repo as would be explained in
our transition document.

- We corrected a few bugs in plane fitting algorithm, but many remain.
Suggestion: You will see that plotting the graphs takes a lot of time. This is probably
because the number of pixels is very high. You can try and decrease the density of pixels
(probably 1:16 downsize of the pixels). This will improve the time, leading to easier, faster
debugging!

- We have designed a rough algorithm for reading and nomenclature of files to be obtained from
Hardware team. This can be implemented. It can be found in Kalpan’s notebook, “Works and
Accomplishment”.

- We have also experimented with Image Tracking and there has been a code in Matlab which does
image tracking.

62
Last revised 04/28/18

Design Document

Smart City - Spring 2018

6.3 Website and Application Development
The analyzes data from the DA team is given in location and severity of the pothole. The WA team
displays that data on a website accessible to the city displaying the location and severity of potholes on a
map. The WA team also develops a smart-device application accessible to the community/public,
allowing people to report issues throughout the city, relaying that information back to the city, also
displayed on the website map.

6.3.1 Existing Solutions
There are a few mobile apps that are available in the market which detects potholes. For instance,

Street Bump , an application which residents of Boston can use to collect road condition data while they
31

drive. It can detect bumps on the streets and provide the city with real-time information to fix short-term
problems and plan long-term investments. However, this type of applications is city-specific and is not
suitable for the city of West Lafayette. Other solution would be what the city of West Lafayette currently
does which is manually assessing damages on the roads. In order to benchmark our potential solution, we
could use the similar applications available in other cities (Street Bump, Get It Done San Diego Official

32

). Based on the initial benchmarking with the project partner, we’ve identified some needs and
functionalities for the smartphone application:

User Need Specification
City must be able to easily see
frequency of pothole reports

● Application must have an admin login option, with a password
requirement (backend)

● Must have a map to show frequency of reports to admin users

● Must have a map to visually plot reports, as well as an address
description of the general area, instead of exact coordinates

● Map must merge submissions in the same location as hardware data

City must be able to determine
the severity of the potholes

● Ability to take picture of damage

● Users must be able to upload pictures of road damage

● Users must be able to write a description of the damage

● Users must be able to document pothole severity in their submission

● Examples of severity should be provided to users to assist in the
rating of severity

● Ability to send the location of damage

Application must be accessible
and appealing to the widest
range of users possible

● Application should be programmed for iOS

● Application should be programmed for Android

● Option to make submissions anonymously

● Application should require less than 1 minute to submit a report of
damage

We discussed many strengths and weaknesses that would allow for convenience and speed for
user-application interaction. We wanted to identify functions that would provide more accurate and more
useful information to the community partner. After an initial meeting with our community partner, we
assigned roles to create a conceptual design that would “provide the best user ability and practicality to all
of our stakeholders” (Marcus, assistant city manager). Various conceptual designs that our team created:

31 http://www.streetbump.org/about
32 https://www.sandiego.gov/get-it-done

63
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Figure: Conceptual designs of Smart City Cities App

64
Last revised 04/28/18

Design Document

Smart City - Spring 2018

List of questions and criteria for project partner meeting, assumed needs to be met:

Question Response
What data do you want to be able to collect?
● Size of pothole (SML)?
● Description box?
● Do you need a picture?
● What needs to be in the picture?

● Picture would be nice
● But worried about asking for a picture
● Maybe can be option, but not necessary

because of safety
● App would be more for street department
● Would be developed for immediate

identification
● Better to have a map than location

services because of location of person
● Like point on the area
● Maybe both??

How do you want to collect location data?
● Is GPS at location of phone enough?
● Specific address?

● Location of pothole
● Coordinates

What kind of user data will be useful to you?
● Name is enough?
● Anonymous is allowed?
● Maybe a Facebook/Gmail sign up?

● Maybe jerks are putting random points…
● Not really needed to sign in, can be

anonymous

Is the app meant to be long term?
● Does it only need to focus on potholes, or cracks

and other things as well?
● maybe can be used for broken street lamps, broken

stop signs etc.

● only potholes
● Maybe leaves?
● But not most important

Do you want other people to see all reports made on a
map?
● Avoiding repetitive reports
● Confidential?
● admin privileges to report when a report has been

resolved

● Want to see the same pothole reported
more than once to show importance

● Don’t show other reports because will
compromise showing frequency

● Admin privileges would be good

iOS and Android? ● Whatever is easiest, look at statistics
● Preferably both
● Want to get as many people as possible

65
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Spring 2018 continued where Fall 2017 left off with the same specifications from previous semesters. To
be thorough, we asked the project partner once again regarding goals and specifications desired within the
application. The following are the questions that were reiterated:

Question Answer

Specifically, who will be utilizing the app? Will
the app be available to the public? Or only for city
use? Is there a specific design that is preferred for
the application?

● No, you can design what you think is best.
● Simple, clean, and professional design so that

residents who are using the app aren’t confused
and can quickly figure out how to use it.

What specific features are you looking for in the
app?

● Giving residents the ability to report issues
(potholes, drainage issues, broken sidewalks,
missing or damaged street signs, traffic
concerns, and other issues)

● Giving us enough information to find the issue
and fix it quickly such as description, location,
and an image (optional).

● Currently residents can either call or email us,
or submit a complaint via our website
(https://www.westlafayette.in.gov/egov/apps/ac
tion/center.egov?view=form;page=1;id=126)
● Giving residents another option for

reporting complaints will be beneficial
and may reduce the number of calls
coming into our office. That would be the
base desire of the app. Another use for the
app could be to include a notification or
information sharing system so that we
could send an alert to people when a road
is closed, when we are doing construction,
if roads are icy, etc. Right now we use
Nixle, which texts and emails people with
that information, but residents might like
another option.

● Have the option to send an update once an
issue has been addressed. Duke Energy
uses a system to report street light issues.
Once the light has been fixed, an alert is
sent.

Specifically, who will be utilizing the app? Will
the app be available to the public or only for city
use?

● The general public to report concerns to us.
● Back-end website would only be available to

city employees.

66
Last revised 04/28/18

https://www.westlafayette.in.gov/egov/apps/action/center.egov?view=form;page=1;id=126
https://www.westlafayette.in.gov/egov/apps/action/center.egov?view=form;page=1;id=126

Design Document

Smart City - Spring 2018

After collecting an initial project partner meeting, the team decided to draw a sketch to decide what we
want our app to look like. We considered affordability, user needs, and all stakeholders as main
functionality needs. We decided to design a simplistic front page to keep space for future additions. For
affordability, we wanted to release the app to one app store only. This will help us test out the application
first, and resolve any issues, before releasing it on another app store as well. With user needs, the app has
to be easy to use, free of charge and it will process quick submissions. Finally, while brainstorming, we
also had to make sure we took all the stakeholders into account.

After analyzing each conceptual design, the team has decided to stick with the following design
(simplistic, modern, and practical):

Figure: low-resolution prototype

From this concept, the team learned that the submit button functions as a data sender to the Purdue data
storage server at EPICS. Also, we learned that the severity button should be a dropdown and not a pop up
– simplifying the application functions with little possible error. We also learned that certain images are
copyrighted and cannot be used in the platform (we took our own pictures). Overall, the team was excited
to see that the functional prototype produced little errors while using the application.

*Note: The chosen design opens up to a very simplistic and straightforward screen, where the name of the
application is highlighted, with an option to report a pothole or contact the city (leading the user into
different pages). The opening screen includes report and contact to increase user-friendliness and allow
users to complete their objective in an efficient manner. The "Report A Pothole" button is very
eye-catching, and takes users to a second page. Users will be able to confirm the location of the pothole
on a map, select the severity of the pothole from a preselected list of severities, describe the pothole with
a 2-3 description, or add a picture of the pothole. Options to describe or add a picture of a pothole are not
required, but users will need to put fill in one of them. After finishing up their report, users are able to
submit the pothole report to the city. If the user accidentally got to pothole report page, instead of contact

67
Last revised 04/28/18

Design Document

Smart City - Spring 2018

the city page, there will be a "Back" button conveniently located on the top left corner for users to click.
The "Contact Us" button is located on the bottom of the opening page that takes users to a page with
information regarding contacting the city with city business hours. Finally if the user wishes to go back to
the main page from the contact page, there is another "Back" button located in the same location as the
other to reduce room for confusion.

Due to our project scope, we do not have a typical manufacturing or assembling process. Our end-deliver
is a smart-device application and is not tangible – digital propitiatory property does not require physical
manufacturing.

Github is an online programming repository for open source collaboration. Downloading Github and the
programming compiler (translates human language to machine language) was long and difficult.
Implementing Github and compiler installation will be documented in our transition document. Also the

33

code behind our process was "assembled" by our team. While this code will stand alone and not be
changed following delivery of the product, it is still important to document what each part of this code
does. The practicality of documenting commands and functions in a user manual type setting is
non-existent. Instead the code which we will deliver will be commented thoroughly. Not only will this be
beneficial upon the delivery of the product, but also in the transition between semesters. This
documentation will be important in the increase of efficiency between semesters.

Here are bill-of-materials that may be necessary to understanding/implementing future progress:

Item Made/ Bought Vendor Quantity
Homebrew Downloaded https://brew.sh/ 1
Node Downloaded React Native 1
Watchman Downloaded React Native 1
React Native Downloaded Terminal; instructions:

https://facebook.github.io/react-native/docs/getting-
started.html

1

Xcode Downloaded App Store 1
Android Studio Downloaded Google Play 1
Github Downloaded https://github.com 1
Sublime Text Downloaded https://sublimetext.com/2 1
Notepad ++ Downloaded https://notepad-plus-plus.org/download/v7.3.3.html 1

Table: Bill-of-materials for future progress

The team has already faced several setbacks resulting in delays. One example of this is the difficulty we
experienced while downloading the selected compiler. Spring 2017 App was not able to complete the
application code prior to the end of this semester. Some of our time constraints include spring break and
individual time allocated for studying and other class work. Our EPICS document deadlines and
individual time allocated for studying and exams. There are no external time constraints imposed by our
project partner. While they have indicated that a timely delivery of this phone application is favorable
there is no required publication date.

*Note: Submit functionality currently shows errors and we suggest looking through where objects are
being called and changed within the React Native environment.

33 Contact Kartik at mittal38@purdue.edu for access to Github

68
Last revised 04/28/18

https://brew.sh/
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://github.com/
https://sublimetext.com/2
https://notepad-plus-plus.org/download/v7.3.3.html

Design Document

Smart City - Spring 2018

*Note: Our detailed design did not implement data saving (server, locally, writing data to .txt). Generally,
App needs to implement the back-end analytics and we suggest collaborating with 6.2 Data Analysis.

For Fall 2017, strides were made in making an actual functioning app. The code was scrapped from the
previous semester, as it allowed for us to have more freedom in creating what we have envisioned. One of
our early prototypes for the application ended up looking too bulky, so we decided against using it:

One of our problems with the option above was that it took too many screens to get to reporting. We have
opted for a single screen experience, going for a look similar to that of Uber:

This gave Fall 2017 the functionality Spring 2017 semester was looking for (ability to take pictures, to
report severity, and to use GPS), while also incorporating a sleek, efficient overall layout. The design has
a permanent marker in the middle that would allow for the user to simply place where the pothole was
that they saw, and can convert it to an address later for the city using the Google Maps API. All the
needed features are on the one page, and next to the address bar on the top of the image there is an
‘options’ button that will give contact information for the city. Fall 2017 intended to add a ‘severity’
scrollbar, but due to time constraints, were unable to execute. Thus, this has become a goal for the Spring
2018 semester - a ‘severity’ scrollbar that has only ‘mild’, ‘moderate’, or ‘severe’ to simplify and
categorize the potholes for people deciding on the severity of the pothole. These options are much more
concrete than a number scale from one to ten. Each pothole will still have a ranking for the city to
determine which pothole requires more attention than others.

69
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Code was developed for what this will look like, and we currently have a layout prototype with some
functionality. To make things easier for the city, we have created a website for the reported data to get
sent to so that it can be seen without a problem for city administrators, but cannot be viewed by the
general public. Below is a view of our current app, with its current functionality, and our near fully
operational website:

Figure: A view of the app and website

Figure: Enhanced version of the app (Spring 2018)

70
Last revised 04/28/18

Design Document

Smart City - Spring 2018

We are continuing to add functionality, but for now we have attained a scrolling map with a working
camera option. Soon we will link our app and website to get reported points to show up on the site.
Already, the website is able to calculate severity of roads and can filter through multiple options. Spring
2018 is also making it a priority to consistently document code to ensure ease of transition between
semesters as a result of personal experience. For this reason we used GitHub, which is a web-based
hosting service for version control and storing the changes made by user is the code. It also gives us the
option to revert back to anhy old code so if we hit a dead end, we can go back to a point where we want. It
is mostly used for computer code. It offers all of the distributed version control and source code
management functionality of Git as well as adding its own features

The prototype of the app does have the functionalities that we intended to include within it; however, the
layout does not look like the way that it is supposed to be. The bottom bar does not stick to the bottom
and more stays in the middle, which distracts the view of the map. Thus, Spring 2018 App Team fixed
this problem after learning the code process of Android Studio and the result is shown as the figure above.
Spring 2018 is also trying to come up with the ways to improve the user interface to increase the
accessibility of the app for the users.

The main objective for Spring 2018 semester was to have a backend server for the app where the
information of pothole like coordinates, severity, image encoded in Base64 format (this is an encryption
format which convert an image to string using inbuilt Android libraries so that it is easy to store on the
server and decrypt back to an image to display it on the website) and time stamp as in what time the data
was sent to the server. The team brainstormed on what server to choose and made a decision matrix
included below to make it more clear which one to use. The 3 different option we narrowed down for
server were - Google’s Firebase, Amazon AWS Mobile Hub and Microsoft’s Azure.

What is Firebase? What is AWS Mobile Hub? What is Microsoft Azure?

Firebase is a cloud service
designed to power real-time,
collaborative applications.
Simply add the Firebase
library to user application to
gain access to a shared data
structure; any changes user
makes to that data are
automatically synchronized
with the Firebase cloud and
with other clients within
milliseconds.

AWS Mobile Hub is the
fastest way to build mobile
apps powered by AWS. It lets
users easily add and configure
features for their apps,
including user authentication,
data storage, backend logic,
push notifications, content
delivery, and analytics. After
users build their apps, AWS
Mobile Hub gives them easy
access to testing on real
devices, as well as analytics
dashboards to track usage of
their apps – all from a single,
integrated console.

Azure is an open and flexible
cloud platform that enables
user to quickly build, deploy
and manage applications
across a global network of
Microsoft-managed
datacenters. User can build
applications using any
language, tool or framework.
In addition user can integrate
his or her own public cloud
applications with existing IT
environment.

71
Last revised 04/28/18

Design Document

Smart City - Spring 2018

After thinking it through, we made a decision matrix to choose the most optimal option.

Factors:
(0-5 scale)

Cost Quality Reliability Accessibility Total

Google’s
Firebase 4 5 5 5 19

Amazon
AWS 3 4 5 3 15

Microsoft’s
Azure 5 5 5 3 18

Benchmark

 5 4 3 2 1

Cost < $25 $25~$34 $35~$44 $45~$54 ≥ $55

Quality ≥ 100k
simultaneous
connections

100k~1k
simultaneous
connections

1k~500
simultaneous
connections

500~100
simultaneous
connections

< 100
simultaneous
connections

Reliability Excellent
security

High security Average
security

Low security No security

Accessibility Fully
compatible

with Android

Almost
compatible

with Android

Partially
compatible

with Android

Barely
compatible

with Android

Not
compatible

with Android

72
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Figure: Data stored on Google’s Firebase server

The image above shows how actually the data is stored in the server. The information is stored in JSON
file (JavaScript Object Notation file) on the server which is easy to read and understand by humans as
well as softwares.

Overall, Spring 2018 is focusing on implementing the expected features as well as additional ones that
have been requested by the project partner.

6.3.2 Project Specifications (Spring 2018)

Website

❏ Website for the city to review this information
❏ Pictures can be used to identify potholes (deep learning)
❏ Place for city to be able to view reported pictures

❏ Attached with markers in website
❏ Streets with many potholes are painted based on their severity

❏ Read data from a server
❏ Usage of simple GET requests
❏ Use information gathered by both the users of the app and the POLES team

73
Last revised 04/28/18

Design Document

Smart City - Spring 2018

❏ Adjust data points to correct for curvature in streets
❏ Use of express, bootstrap and jquery to make web development easier
❏ Online programming environment for the website that will later be transferred into a

server (cloudnine)
❏ Website will only be accessible through the city’s network
❏ Local password might be instated (if the city needs one)
❏ Easy to use UI
❏ Visually appealing styling (simple styling)
❏ Filtering of the potholes based on Severity, street and date (month)
❏ Programmed to work on all screen sizes including mobile

API

❏ Map API integrated into app
❏ Map can move around
❏ Move point in center of map (e.g. Uber)

❏ Address bar able to locate positions
❏ Street name, city name, state, zip code

❏ Location Services
❏ Current location
❏ Location of the address typed

❏ Camera API integrated into app
❏ Usage of simple POST requests
❏ Developed to run on both new and old android version

❏ Developed UI
User Experience

❏ Scrollbar for severity
❏ Use of three severity levels:

❏ Mild
❏ Moderate
❏ Severe

❏ One screen layout, easy to use even for first time users
❏ Map functionality easy to interact with

❏ Visually appealing interface
❏ User safety accounted for

❏ Alert/notification system
Data Collection

❏ Setting up an appropriate server
❏ Enough space to store data
❏ Compatible with both app and website

74
Last revised 04/28/18

Design Document

Smart City - Spring 2018

❏ Efficient data package
❏ Stores picture separately from text data
❏ Packages data to be sent to server for storage

❏ Take user input into data package
❏ Send data to server

Overall Timeline

 6.3.3 Website Progression: Spring 2018
The team from previous semester had done a fantastic job on the website. The website is functioning with
basic functions (filter by severity or date, marking on the map, and hide/unhide data collected by
application or kinect). Our goal for Spring 2018 was to host the website so that we can see if it is actually
working properly on the internet as it is on the local host. We tried to use Firebase but it does not work.
Apparently, we found out that the website was written in JavaScript with node.js . If you do not know
what is node.js and you are working on the website, I recommend you to learn about it ASAP.

The code can be found on the team’s SharePoint, or in the Google Drive folder . The code for the website 34

is written on a cloud environment called Cloud9 (https://aws.amazon.com/cloud9/) which is preferable
just in case the code is lost in your personal computer. If you have never used Cloud9 before, we have
made a manual on how to use it which can be found on one of our members’ notebook (you may need to
login). The explanation of what those files do are also attached in the notebook. If you have any further
question on how to run the website, feel free to contact one of us.

For the moment, the website is only accessible when a free temporary server is ran. This service is
provided by Amazon’s Cloud9. However, this server cannot support a high traffic data transfer and it will
automatically shut down if left idle for more than 15 minutes. Fortunately, this is good enough for the
team as we are only trying the prototype. If this website needs to be published, it needs to be transferred
into a more proper server.

34 https://drive.google.com/drive/folders/1uDLePJS4xR6xgMzAiFkGTSvftO1iwooU

75
Last revised 04/28/18

https://aws.amazon.com/cloud9/
https://sharepoint.ecn.purdue.edu/epics/teams/smartcity/_layouts/OneNote.aspx?id=%2Fepics%2Fteams%2Fsmartcity%2FNotebooks%2FApp&wd=target%282018%20Spring%2FAzizuddin.one%7C99BC1822-4F69-4C9D-A9AA-36551A956DCD%2FWebsite%20%26%20Cloud9%20Manual%7C2BF85E34-7369-F94A-B8A2-3BD9970C5C08%2F%29

Design Document

Smart City - Spring 2018

Hosting
For Spring 2018, we tried to host the website using Google Firebase hosting service with the assumption
that it would be easier to link it with the database as it is using Firebase too. However, the map does not
show up on the link (https://epicssmartcity.firebaseapp.com). We figured maybe because the website was
written in JavaScript (JS) while Firebase can only host HTML. So, we made an attempt to convert the
JavaScript to HTML. Unfortunately that does not solve the problem. Advisors suggested us to meet Jason
Dufair , a senior software engineer working at Purdue Learning and Teaching Technology to help us in 35

this issue.

We met Mr. Dufair and he explained everything that needed to be done to host the website as it was
written in JavaScript. Later, we did what Mr. Dufair told us and this does not work too. Then, we found
out that the way Cloud9 work is a bit different than others. We met a few of our friends from Computer
Science major but they said that this environment (Cloud9) works a bit differently. Then, our teaching
assistant advised us to contact Google Firebase Support to help us with this issue. Here is their response:

Thanks for reaching out! Unfortunately Firebase hosting currently doesn't support server side scripting languages so Node.js
files won't run when you deploy them to Firebase.
We are looking into supporting server side scripting in the future but I don't have any timelines to provide at the moment. Be
sure to keep an eye on our release notes for any further updates.

You can also check our Cloud Functions and see if it meets your use case. You will be able to connect the functions with
Firebase hosting as well.

Let me know if you have any questions.

Thanks,
Wiley

This contradicts to what Mr. Dufair said that Firebase should be able to host it. He is not wrong. The
Firebase does support node.js, only that it does not support Cloud9. Therefore, we looked into a few
others alternatives that can support node.js hosting. Below some of the hosting service that we found:

1. OpenShift (https://www.openshift.com/)
2. Nodejitsu (https://www.nodejitsu.com/)
3. Microsoft Azure (https://azure.microsoft.com/)

However, please do acknowledge that if you are using Cloud9, make sure that the hosting you are using
can support the integration of Cloud9.

The main issue here is using Firebase on Cloud9. There is not much information and reference to do it.
You will find a lot of websites and videos tutorial on hosting node.js on the internet. That was what we
did and usually it was just find at the beginning. However, at some point it would not be the same as the
video anymore. This is where we think you will need someone with advanced coding skill especially
JavaScript.

35 Jason Dufair is now with Learning and Teaching Technology so he is a bit difficult to be reached in person. He
was a staff in EPICS and helped many students about software relating problem. Contact : jase@purdue.edu

76
Last revised 04/28/18

https://epicssmartcity.firebaseapp.com/
https://firebase.google.com/support/releases
https://firebase.google.com/docs/functions/
https://www.openshift.com/
https://www.nodejitsu.com/
https://azure.microsoft.com/

Design Document

Smart City - Spring 2018

We believe that there is a way to work around this. Only that none of us knows how to do it. The progress
of this website will require someone who has experience working with node.js

Connecting to a Server
For now, our Android application has been successfully integrated with Firebase Database server. More
information can be seen in the application section.

We consulted Mr. Dufair about integrating the website with the data collected on the database. He said it
should be easy as we only need to add a few lines of code and the APIKEY, etc. We have not tried to
connect it with a server as we only connected the application with database quiet late in the semester and
we were trying to figure out how to host node.js

Data (Markers on Map)
The Spring 2018 team learned that all the data in the map (below) are hardcoded. This is the only option
available as no server is established yet. The server is needed so that the data from Kinect and application
can be stored in one place. The plan is to make the website read the data from the server and
automatically update it on the location instead of manually entering the code. The current focus of the
website is to display data from both app and kinect as pothole reporting website is already available on
the official City of West Lafayette’s website.

77
Last revised 04/28/18

Design Document

Smart City - Spring 2018

The code for the markers can be found at workspace > smart_city > public > smart_city.js . var
allPotholes is the code where all the data for “App data” filter while var allPotholes_DA is where the
data for “Data Analysis” filter.

Also attached is the location of the marker, and the line of the code (assuming the code is untouched):

6.3.4 Final Design Review Comments/Reflection

● All decision matrices need to be weighted and ranges specified.
● Include “usability;” ease for a user to work with a server service.
● How do you differentiate between levels of severity from different users?
● Implement feature so that the app cannot be used while driving.
● Will there be any type of prioritization when scheduling repairs? Will traffic data be

incorporated?
○ Future implementation of re-routing feature

● Address why the app is only being designed for Android at the moment in the Design Review.
● How were coding and interfacing decisions made, and does this meet the needs of majority of

users?
○ Reiterate the needs of the project partner.
○ Include decision matrices.

● Data flow diagram was over simplified and confusing.
● Address security and data ownership on server selection.
● Size constraints and/or optimization in app before sending through app?
● Consider how the website will be monitored and updated when potholes are fixed.
● What happens if two people mark the same pothole on the app? Does the severity level update

with the most recent data received?

78
Last revised 04/28/18

Design Document

Smart City - Spring 2018

6.3.5 End-of-Semester Summary

For Spring 2018, we continued what we had from previous semester and made much progress in
improvements as well as additions. This semester, we particularly focused on having proper
documentation for our team so that the future semester don’t have a problems understanding what has
previously been completed. Moreover, for the app, we included a RealTime Database server so that we
have the information collected from the user of the reported pothole. This was a major accomplishment as
any app needs a server to collect data. We also fixed the user interface of the app so that it appears robust.
We also did some error handling in the app such that the user cannot send the information unless they
have specified the severity and taken a photo so that inaccurate information is sent. Additionally, a major
feature we added is to use the GPS of the device to get user location so that the user starts the app with the
map pointing to their current location. This makes it easy for the user to start off the app with their own
location.

For future semesters, we hope to do rigorous testing of the app and deliver it to general users to
get feedback and suggestions for improvements regarding, but not exclusively, usability. Moreover, as
this app is current only compatible with Android devices, futures semester should have a goal of
delivering an iOS version as well. Additional features should also be implemented to report general issues
apart from potholes as per the project partners’ need.

79
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Appendix A: Past Semester Archive
A.1: Team Members
A.1.1: Fall 2017

Name Role

Mohammad
Jahanshahi

●EPICS Advisor
o Advises EPICS Syllabus learning objectives
o Guidance in sensor technology/analysis
o Initial project innovator

Margaret Phillips ●EPICS Advisor
o Advises EPICS Syllabus learning objectives
o Guidance in academic research and group cohesion/leadership

Dahjung Chung ●Teaching Assistant
o Academic logistics and operations for EPICS section
o Guidance in sensor technology/analysis

Eric Jin Wook
Choi

●Project Manager – responsible for overall operation and effectiveness of team and
provides planning, direction, and guidance

●POLES (Data Analysis)
o Detection and quantification of potholes
o GUI (front-end) development

Mohammad
Kobeissi

●App Design Lead
o Oversees App design
o Responsible for facilitating project through components of design process
o Responsible for project planning, execution, risk assessment to deliver a quality

team end-deliverable on time/budget

Fajar Ausri ●POLES Co-Design Lead
o Oversees POLES design
o Responsible for facilitating project through components of design process
o Responsible for project planning, execution, risk assessment to deliver a quality

team end-deliverable on time/budget
●POLES (Data Analysis)

o Ensuring Kinect data collection (data management, error analysis)
o Quantification of potholes
o Google Maps API implementation to GUI (front-end)

80
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Grant Hilbert ●POLES Co-Design Lead
o Oversees POLES design
o Responsible for facilitating project through components of design process
o Responsible for project planning, execution, risk assessment to deliver a quality

team end-deliverable on time/budget
●POLES (ultrasonic) – ensuring ultrasonic data collection (data management,

programming)

Gytis Kriauciunas ●Financial Officer – develop/manage project’s budget
●POLES (GPS) – ensuring GPS data collection (data management, programming)

Yvette Chowdry ●Project Archivist – ensuring quality of project documentation and documentation
practices

●App – GitHub implementation

Tiyani Hu ●Project Partner Liaison
o Communication between teams and the community project partner
o Inform on regular basis of progress of the project and relevant team

documentation for partner observation/comment
●POLES (Kinect) – ensuring Kinect data collection (data management,

programming, error analysis)

Weili Wang ●Webmaster – update/maintain project’s website
●POLES (GPS) – ensuring GPS data collection (data management, programming)

Lexie Plocher ●POLES – ensuring inter-team communication, group dynamic, and team
milestones

Nicholas Briggs ●App – pothole reporting functionality

Nicholas Idso ●App – GUI (front-end) development

A.1.2: Spring 2017

Name Role

Mohammad
Jahanshahi

●EPICS Advisor
○ Advises EPICS Syllabus learning objectives
○ Guidance in sensor technology/analysis
○ Initial project innovator

81
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Margaret Phillips ●EPICS Advisor
○ Advises EPICS Syllabus learning objectives
○ Guidance in academic research and group cohesion/leadership

Dahjung Chung ●Teaching Assistant
○ Academic logistics and operations for EPICS section
○ Guidance in sensor technology/analysis

Eric Jin Wook
Choi

●Project Manager – responsible for overall operation and effectiveness of team and
provides planning, direction, and guidance

●POLES (Data Analysis)
○ Detection and quantification of potholes
○ GUI (front-end) development

Mohammad
Kobeissi

●App Design Lead
○ Oversees App design
○ Responsible for facilitating project through components of design process
○ Responsible for project planning, execution, risk assessment to deliver a quality

team end-deliverable on time/budget

Fajar Ausri ●POLES Co-Design Lead
○ Oversees POLES design
○ Responsible for facilitating project through components of design process
○ Responsible for project planning, execution, risk assessment to deliver a quality

team end-deliverable on time/budget
●POLES (Data Analysis)
○ Ensuring Kinect data collection (data management, error analysis)
○ Quantification of potholes
○ Google Maps API implementation to GUI (front-end)

Grant Hilbert ●POLES Co-Design Lead
○ Oversees POLES design
○ Responsible for facilitating project through components of design process
○ Responsible for project planning, execution, risk assessment to deliver a quality

team end-deliverable on time/budget
●POLES (ultrasonic) – ensuring ultrasonic data collection (data management,

programming)

Gytis Kriauciunas ●Financial Officer – develop/manage project’s budget
●POLES (GPS) – ensuring GPS data collection (data management, programming)

82
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Yvette Chowdry ●Project Archivist – ensuring quality of project documentation and documentation
practices

●App – GitHub implementation

Tiyani Hu ●Project Partner Liaison
○ Communication between teams and the community project partner
○ Inform on regular basis of progress of the project and relevant team

documentation for partner observation/comment
●POLES (Kinect) – ensuring Kinect data collection (data management,

programming, error analysis)

Weili Wang ●Webmaster – update/maintain project’s website
●POLES (GPS) – ensuring GPS data collection (data management, programming)

Lexie Plocher ●POLES – ensuring inter-team communication, group dynamic, and team
milestones

Nicholas Briggs ●App – pothole reporting functionality

A.2: Fall 2017 Timelines
A.2.1: Data Analysis and Hardware Team Fall 2017

83
Last revised 04/28/18

Design Document

Smart City - Spring 2018

A.2.2: App Team

Phases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Project
                              Identification

Phase

Description of the
Community                              

Stakeholders                              

Social Context                              

User Needs                              

Specification
                              Development

Phase

Benchmarking/IP                              

Specifications                              

Conceptual Design
Phase                              

Brainstorm                              

Low Resolution
Prototyping                              

Concept
Convergence                              

Proof-of-Concept
Prototyping                              

Proposed Solution                              

Detailed Design
Phase                              

Design Process

                   

84
Last revised 04/28/18

Design Document

Smart City - Spring 2018

   

B.O.M.s                              

Manufacturing/Asse
mbly Process                              

Risk Analysis                              

Verification                              

Validation                              

Delivery Phase                              

User Manual                              

Waiver Release &
Hold Harmless                              

Customer

                              Satisfaction
Questionnaire

Delivery Checklist                              

Approvals                              

Service/Maintenance Phase
Retirement or
Redesign                              

85
Last revised 04/28/18

Design Document

Smart City - Spring 2018

A.3: Spring 2017 Timelines
A.3.1: Data Analysis and Hardware Team

A.3.2: App Team

 Week

Phases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Project
                                Identification

Phase

Description of
the Community                                

Stakeholders                                

Social Context                                

User Needs                                

Specification                                

86
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Development
Phase

Benchmarking/
IP                                

Specifications                                

Conceptual
Design Phase                                

Brainstorm                                

Low Resolution
Prototyping                                

Concept
Convergence                                

Proof-of-Conce
pt Prototyping                                

Proposed
Solution                                

Detailed
Design Phase                                

Design Process                      

B.O.M.s                                

Manufacturing/
Assembly
Process

                               

Risk Analysis                                

Verification                                

Validation                                

Delivery Phase                                

User Manual                                

Waiver
Release & Hold
Harmless

                               

Customer

                                Satisfaction
Questionnaire

Delivery
Checklist                                

Approvals                                

Service/Maintenance Phase
Retirement or
Redesign                                

87
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Appendix B: Overall Project Design
Smart City Cities developed its own design process/timeline apart from the expected EPICS framework.
For current progress timeline, see 5.4 Semester Timeline. The following descriptions are provided from
the Smart City Appendix and detailed status/evidence is provided.

36

B.1 Project Identification
Description: Each document is should include a Project Identification outlining and describing the
specific problem that the team will be addressing and some preliminary description of the overall function
of the end-product (which preliminary needs will be fulfilled, describe what the solution/product will do,
and how the solution/product will solve the preliminary problem/need). Descriptions should be based on
some educated support (secondary research, gauging small sample of the population, peer-reviewed
sources/citations, etc.). Explain why the team’s problem is worth addressing (socioeconomic or
geopolitical impact).

Provide a description of Smart City’s community project partner and some of the needs (portray how your
team views and identifies the partner and their needs). Identify primary/secondary users and stakeholders
(description and needs). Project identification of users/stakeholders and needs should be preliminary
description based on initial meetings with the project partner and initial need-finding of a small sample of
users. Further elaboration should be done in Overall Project Design > Functional Evaluation.

*Note: Goal is to identify a specific, compelling need to be addressed

Phase 1: Project Identification Status Evidence can be found:
Conduct needs assessment (if need
not already defined)

Status: Completed
Semester: Spring 2017

● 4.1 Project Charter
● 4.4.1 POLES

Outcomes/Deliverables
● 4.4.2 Smart City City App

Outcomes/Deliverables
Identify stakeholders (customer,
users, person maintaining project,
etc.)

Status: Completed
Semester: Spring 2017

● 4.2 Stakeholders

Understand the Social Context Status: Completed
Semester: Spring 2017

● 4.4.1 POLES
Outcomes/Deliverables

● 4.4.2 Smart City City App
Outcomes/Deliverables

Define basic stakeholder
requirements (objectives or goals of
projects and constraints)

Status: Completed
Semester: Spring 2017

● 4.1 Project Charter

Determine time constraints of the
project

Status: Completed
Semester: Spring 2017

● 4.4.1 POLES
Outcomes/Deliverables

● 4.4.2 Smart City City App
Outcomes/Deliverables

36 Smart City SharePoint>Spring2017>Smart City Appendix

88
Last revised 04/28/18

Design Document

Smart City - Spring 2018

B.2 Specification Development
Description: Prepare a background review based on initial project partner engagement and conceptual
design brainstorming relevant to the users and stakeholders. Discuss requirements and limitations of a
prototype based on users/stakeholders, technology, and environmental issues (identify and define the
design issues associated with the prototype). Reference any peer reviewed documents to support the
team’s decisions (refer to Purdue Libraries). Discuss the performance requirements/limitations of the
prototype (consider the level of needed functionality of a product and how the product will perform
various functions to satisfy needs and activities). Refer to the Semester Team Information discussion of
cost-analysis breakdown and consider the effects of cost into the performance of a prototype/end-product.
Provide some discussion to the possible inter-project limitations that may influence the initial prototype
and field testing (waiting on another team to finish a progress, communicating/establishing testing
standards, differing user/stakeholder testing targets, etc.).

*Note: Goal is to understand “what” is needed by understanding the context, stakeholders, requirements
of the project, and why current solutions don’t meet need, and to develop measurable criteria in which
design concepts can be evaluated.

Phase 2: Specification
Development

Status: Evidence can be found:

Understand and describe context
(current situation and environment)

Status: Completed
Semester: Spring 2017

● 4.4.1 POLES
Outcomes/Deliverables

● 4.4.2 Smart City City App
Outcomes/Deliverables

Create stakeholder profiles Status: Completed
Semester: Spring 2017

● 4.2 Stakeholders

Create mock-ups and simple
prototypes: quick, low-cost,
multiple cycles incorporating
feedback

Status: Completed
Semester: Spring 2017

● 6 Current Design

Develop a task analysis and define
how users will interact with project
(user scenarios)

Status: To be done
Semester:

Identify other solutions to similar
needs and identify benchmark
products (prior art)

Status: Completed
Semester: Spring 2017

● 6 Current Design

Define customer requirements in
more detail; get project partner
approval

Status: Completed
Semester: Spring 2017

● 6 Current Design

Develop specifications document Status: Completed
Semester: Spring 2017

● 6 Current Design

Establish evaluation criteria Status: To be done
Semester:

89
Last revised 04/28/18

Design Document

Smart City - Spring 2018

B.3 Conceptual Design
Description: Create a system map that outlines the connections and functions of every operation and
activity of an ideal, initial prototype. The system map should clearly show that each function satisfies
some activity or need of the users/stakeholders (system map forces designers to archive need-satisfaction
and includes the users/stakeholders to the design table). An example of an optimal system map can be
presented in lab.

Develop a simple prototype that can be built in a few minutes and utilize the initial prototype as a basis
model to further improve upon. Do not create a fully-somewhat functional prototype. Tap into the
engineering imagination and imitate the functionality and end-goal standards of an end-product to the
initial prototype. Document your initial prototype with pictures and a description of functions based on a
system map.

Return to the community project partner and discover if the team’s Project Specification is appropriate
and satisfies the users’ and stakeholders’ needs. Investigate the user’s interaction with the initial prototype
and note the smallest interactions details. Question and gauge individual interactions as they may provide
insight into a “problem” that the team may have overlooked or unpredicted. An initial functional
evaluation with the user allows the design team to get a sense of how someone might interact with your
initial prototype and may reveal suggestions into the Functional Prototype.

*Note: Goal is to expand the design space to include as many solutions as possible. Evaluate different
approaches and selecting “best” one to move forward. Exploring “how”.

Phase 3: Conceptual Design Status: Evidence can be found:
Complete functional decomposition Status: Completed

Semester: Spring 2017
● 6 Current Design

Brainstorm several possible
solutions

Status: Completed
Semester: Spring 2017

● 6 Current Design

Prior Artifacts Research Status: Completed
Semester: Spring 2017

● 4.3 Project Objectives

Create prototypes of multiple
concepts, get feedback from users,
refine specifications

Status: Completed
Semester: Spring 2017

● 6 Current Design

Evaluate feasibility of potential
solutions (proof-of-concept
prototypes)

Status: Completed
Semester: Spring 2018

Choose "best" solution Status: Completed
Semester: Spring 2017

● 6 Current Design

90
Last revised 04/28/18

Design Document

Smart City - Spring 2018

B.4 Detailed design
Description: Develop a physical model for functional evaluation. Refer to the system map and initial
functional evaluation with the project partner and develop a physical functioning prototype. Document
with pictures and descriptions as appropriate. In order to test the interactive and usability functionality of
the team’s prototype, develop a prototype that integrates some level of activity that the users will be able
to learn the objective of the team’s end-product.

Ideally recruit 7 users for an acceptable functional evaluation. One suggestion of testing may be to allow
testers interact with the prototype through self-exploration (let the testers play with it). The main objective
of functional evaluation is to obtain an initial assessment of the “goodness” of the need-finding, system
map, and design process. Sitting down to gauge a small sample of testers will allow engineers to uncover
unforeseen problems not identified within the scope of functional decomposition. For a functional
evaluation to yield effective results, try to remove any team’s bias in asking questions and imagine being
in the shoes of an “everyday” user. For documentation, write up a description of how the team conducted
field trials (what did you ask the participants to do? how did you recruit testers? how many testers? etc.),
some secondary research on demographic information, and data/conclusions from field trials.

After an “effective” Functional Evaluation, return to the drawing table and implement changes based on
data/conclusions. Redesign the Functional Prototype (simplifying functions, aesthetic adjustments, new
activities, etc.) and incorporate the redesign into a new functional prototype. A Revised Prototype should
be ideal product that an engineer would like to propose to his/her superiors for further
research/investment. A revised prototype should be able to communicate the appearance (what the team
had in mind for a product; shape, size, weight, color, etc.) for the redesign.

Field testing differs from functional evaluation. Field testing determines if the executable functions of a
prototype yields acceptable results (does the prototype work to produce data?). For documentation, write
up a description of how the team conducted field trials (what did you ask the participants to do? how did
you recruit testers? how many testers? etc.), some secondary research on demographic information, and
data/conclusions from field trials. Please recruit different testers.

Go back to project prospectus and project specification and access how well your redesigned solution
compares to the team’s original goals for the project. Identify and document what improvements have
been made (include some reasoning why improvements had to be made/ why “problem” was not
identified) and suggest further improvements for future EPICS redesign (suggestions should be
optimizations goals to streamline the existing design framework established in this team’s design
document). Describe what your team views as the “best” solution for the users/stakeholders. Clearly state
what final improvements are needed and why they are essential to the success of the users/stakeholders
based on the team’s findings in functional evaluation and redesign.

*Note: Goal is to design working prototype which meets functional specifications.

Phase 4: Detailed Design Status: Evidence can be found:
Bottom-Up Development of
component designs

Status: Completed
Semester: Spring 2017

● 6 Current Design

Develop Design Specification for
components

Status: In-Progress
Semester: Spring 2018

● 6 Current Design

Design/analysis/evaluation of
project, sub-modules and/or
components (freeze interfaces)

Status: In-Progress
Semester: Spring 2018

● 6 Current Design

91
Last revised 04/28/18

Design Document

Smart City - Spring 2018

Design for Failure Mode
Analysis (DFMEA)

Status: To be done
Semester:

Prototyping of project,
sub-modules and/or components

Status: To be done
Semester:

Field test prototype/usability
testing

Status: To be done
Semester:

92
Last revised 04/28/18

Design Document

Smart City - Spring 2018

B.5 Delivery
Description:

*Note: Goal is to refine detailed design so as to produce a product that is ready to be delivered! In
addition, the goal is to develop user manuals and training materials.

Phase 5: Delivery Status: Evidence can be found:
Complete deliverable version of
project including Bill of Materials

Status: To be done
Semester:

Complete usability and reliability
testing

Status: To be done
Semester:

Complete user manuals/training
material

Status: To be done
Semester:

Complete delivery review Status: To be done
Semester:

Project Partner, Advisor, and EPICS
Admin Approval

Status: To be done
Semester:

93
Last revised 04/28/18

Design Document

Smart City - Spring 2018

B.6 Service / Maintenance
Name of Servicer/Maintenances Date Service/Maintenance Done Notes

94
Last revised 04/28/18

