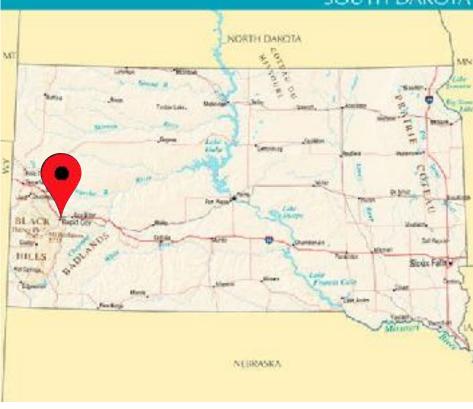
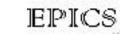
LAKOTA Spring Design Review April 20th, 2018

SOUTH DAKOTA




This work is the combined effort by the students from Purdue, SDSMT and OLC.

Partnering Universities

SOUTH DAKOTA

Team Members: Purdue

Jonathan Damon Shamya Dey

Project Manager First Year Engineering First Year Engineering Jacob Lundgren First Year Engineering

EPICS

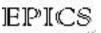
Nick Demsher Electrical Engineering Junior Alyssa Tamvakis First Year Engineering

Team Members: SD School of Mines

Samuel Ryckman

2nd year Mechanical Engineer Computer Science

Erika Weeks


2nd year Chemical Engineer

Caleb Ehrisman

1st year Mechanical Engineer

Jason Phillips

Civil and Environmental Engineering

Team Members: Oglala Lakota College

EPICS

Amanda Ruiz

Project Manager Earth Science Lakota Botany Senior

LaShell Bagola

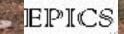
Earth Science Lakota Botany Junior

Rick Gerlach Lakota Studies Junior

Madison Phelps

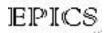

1st year Pre-Engineering AA in Tribal Law *Junior*

Community Partner Information


Food Desert: An area where either a substantial number or share of residents has low access to a supermarket or large grocery store (USDA)

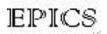
- 80% limited access to grocery stores
- 95% of food from off-reservation sources
- Food cost 10% higher

Social Context & The Trip to Pine Ridge



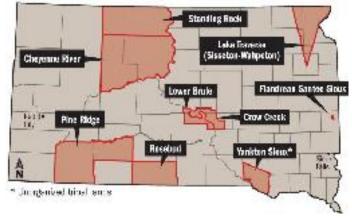
Thunder Valley Greenhouse

- 16 tubes 8ft in the ground pull heat from the ground into the greenhouse
- Survived hail and 70 mph winds that didn't even damage the structure
- Polycarbonate sheeting covers the top of the greenhouse
- Possibly grow dwarf citrus trees
- Corrugated tubes help cool the system with a fan


Thunder Valley Greenhouse, South Dakota

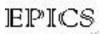
• Design and build a cultural education greenhouse that will be home to a diversity of traditional cultural plants used as food and medicines

 Design a learning center to serve as a cultural hub station to strengthen STEM education, Research, Lakota culture, Lakota Language, Science, IT and Engineering

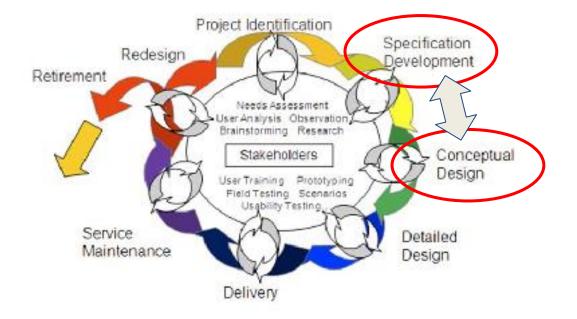

Stakeholders

Number	Stakeholder
1	Residents of the Oglala Sioux Tribe (Pine Ridge Reservation)
2	Students at Oglala Lakota College (Nine OLC Centers)
3	Members of the Lakota Nation located in Rapid City, South Dakota.

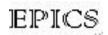
EPICS

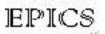


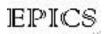
South Dakota's Indian Reservations

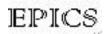


User Needs


Number	User need	Stakeholder
1	Learning center 7 sided	The tribes that make up OLC.
2	Door facing east	The tribes that make up OLC.
3	Cultural plants (will be picked by them)	The tribes that make up OLC.
4	Seperate room for mushrooms	The tribes that make up OLC.
5	No cement floor	The tribes that make up OLC.
6	Try to make as energy efficient as possible	The tribes that make up OLC.
7	Try to involve the community as much as possible	The tribes that make up OLC.

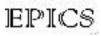

Phase: Specification Development


Project	Greenhouse		
Number	User need	Specification number	Specification
1	Fit the cultural wants		
		1.1	7 sided learning center
		1.2	Door facing east
		1.3	Cultural plants (picked out by the Lakota people)
		1.4	Seperate room for mushrooms
			No cement floor
		1.5	


Project	Greenhouse		
Number	User need	Specification number	Specification
2	Greenhouse specifications		
		2.1	20 by 48 ft
		2.2	As energy efficient as possible
		2.3	Use solar panels
		2.4	Do not use electricity for primary source of heating
		2.5	Have an irrigation system that conserves water
			Window roof
		2.6	


Project	Greenhouse		
Number	User need	Specification number	Specification
3	Learning Center		
		3.1	7 sided
		3.2	Must have enough space
		3.3	for a classroom of people
			Door must be facing east

Project	Greenhouse		
Number	User need	Specification number	Specification
4	Both structures must		
	withstand the weather		
		4.1	Large hail (1.50-1.75")
			70 mph winds
			100+ f degree weather
			<0 f degree weather
			snow pile up



Energy Usage (OLC/Mines)

Item	Average While Running (Watts)	Energy Used Per Day (kWh/day)
Lights	340	2.04
Water Pump	200	0.2
Ventilation/cooling	1,490	17.9
Heating	0	0
	Total:	20.1

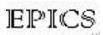
Heating (OLC/Mines)

Heat Loss

Worst Case

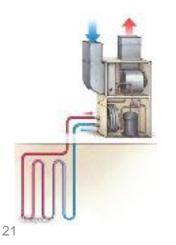
- Loss through non-transparent: <u>57.9 kWh/day</u>
- Loss through transparent: <u>137 kWh/day</u>

Total heat lost = **195 kWh/day**

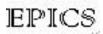

Thermal Blanket

• Loss through transparent: <u>44.0 kWh/day</u>

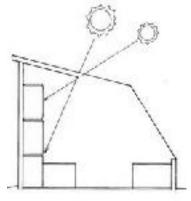
Total heat lost = 102 kWh/day



Different types of heating

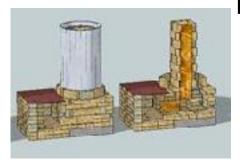

Electric Heater

- + 100% efficient
- + Cheap
- Uses a lot of electricity



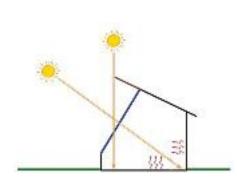
Geothermal Heat Pump

- + > 100% efficient (360% avg)
- Can also be used for cooling
- Expensive
- Still uses electricity

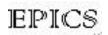


Different types of heating

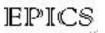
Thermal Mass


- Requires no electricity
- Relatively Cheap
- Takes a large amount of space
- Limited Heat Production

Rocket Mass Heater

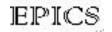

- + Requires no electricity
- More efficient than wood burning stoves
- + Maintains heat after burn is completed
- Relatively Cheap
- Would have to manually operate

Different types of heating



Solar Heating

- + Requires no electricity
- Also give light to plants
 - Materials are expensive
 - Large amounts of heat lost through material


Type of Heating	Approximate Cost	Average Heat Produced (Watts)	Max Heat Produced Per Day (kWh/day)	Average Power Needed (Watts)
Electric Heater	\$113	5,600	134	5,600
Geothermal	\$8,000	5,860	141	1,670
Thermal Mass	\$730	3,510	84.3	0
Rocket Mass Heater	\$700	727	17.4	0
Solar Heating	\$3,240	3,510	84.3	0

Ventilation

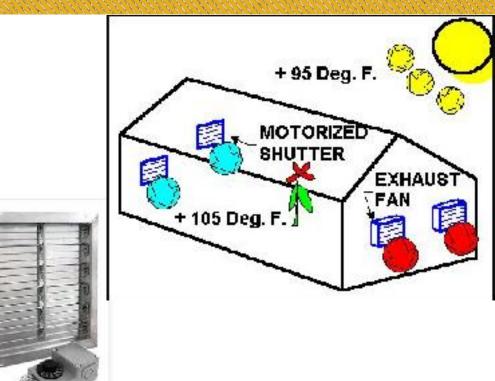
JavaScript G	reenhouse Exhaust Fan G	CFM Calculator
Do this	JavaScript Calculator	Example
Measure the height of your greenhouse.	13	You measured a floor to ceiling height of 8 feet.
Determine the width of your greenhouse.	20	You measured the width at 8 feet.
Find out the length .	48	You enjoy a medium sized greenhouse, measuring 16 foot long.
Multiply the height by the width by the length.	calculate	Your greenhouse measurements were 8'H, 8'W, and 16'L.
Look for this minimum ventilation fan CFM rating to keep your greenheuse healthy year round.	12480	8'H × 8'W × 15'L = 1024 cfm
This is the optimum ventilation tan CEM rating many growers use.	18720	$8'H \times 8'W \times 15'I \times 1.5 = 1536$ ctm

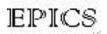
https://www.greenhousecatalog.com/greenhouse-fan-calculator

Ventilation

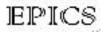
Natural Ventilation (Air Flow/wind):

- 20% of the area of the floor
 - 48x20=960 sq ft
 - 960x0.20= 192 sq ft of airflow

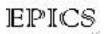

EPICS


30" shutter with motor -> \$195.00

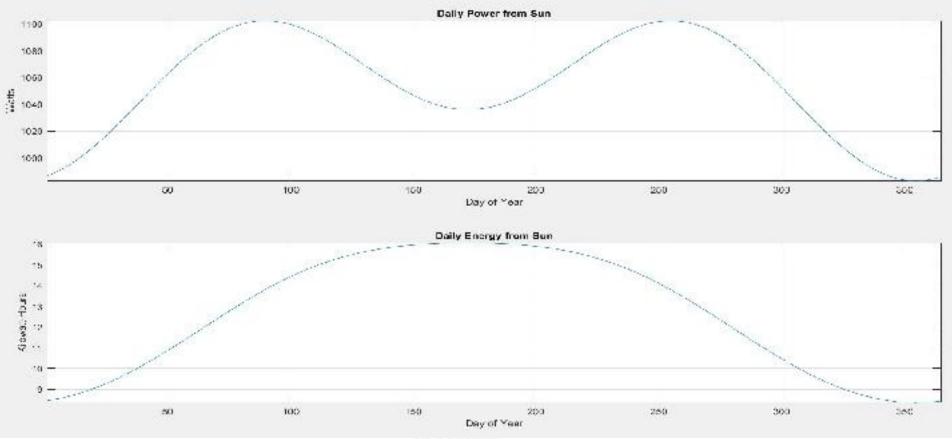
Ventilation

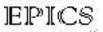

Package: \$890 With 2 30" shutters

MATLAB Algorithm

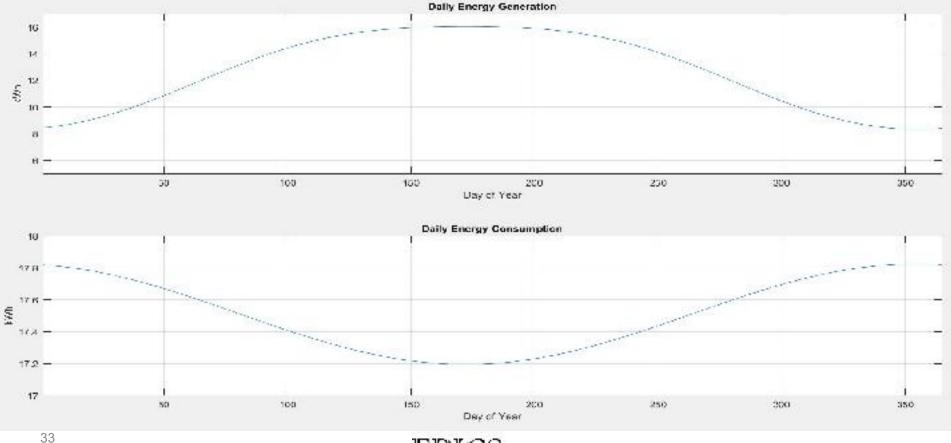

Algorithm receives user-input values for:

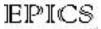
- Total Area of Solar Panels (square feet)
- Angle of Solar Panels from horizontal (degrees)
- Efficiency of Solar Panels (number between 0.00 and 1.00)
- Latitude of Installation (Rapid City, SD is at 44.076⁰ N)
- Power Rating of Ventilation System (Watts)
- Power Rating of Irrigation System (Watts)
- Power Rating of Growing Lights (Watts)
- Power Rating of General Lights (Watts)

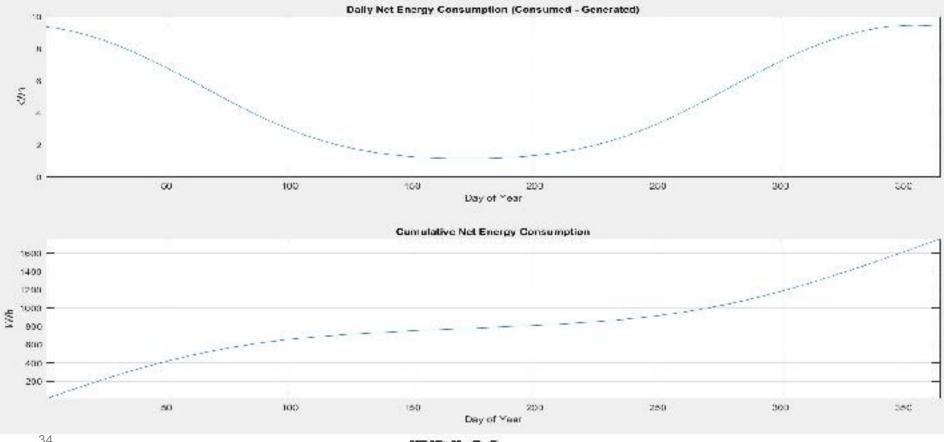

The following execution of the algorithm is based off the following user inputs:


- Total Area of Panels: 200 square feet
- Angle from Horizontal: 40.5° (experimentally determined optimal angle)
- Panel Efficiency: 0.15 (typical solar panel efficiency rating)
- Latitude: 44.076° N (Latitude of Rapid City, SD)
- Power Rating, Ventilation: 500 W
- Power Rating, Irrigation: 200 W
- Power Rating, Grow Lights: 10X9 W LED's = 90 W
- Power Rating, General Lights: 10X8.5 W LED's = 85 W

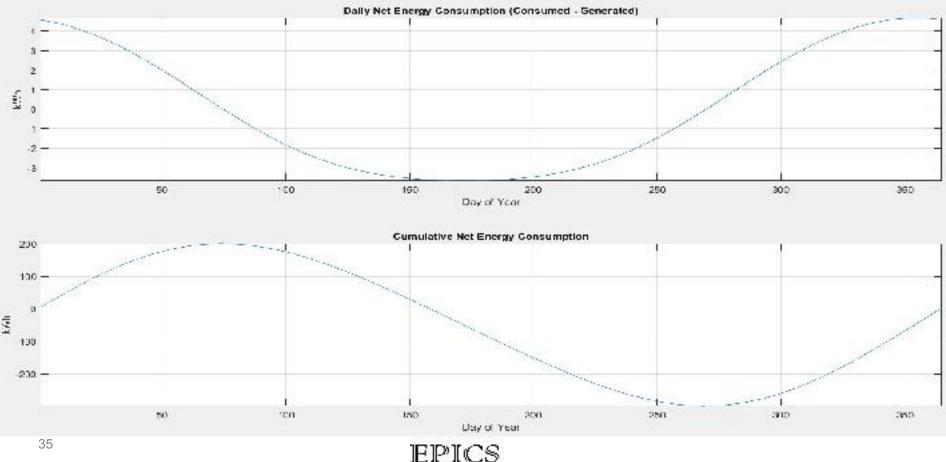
Area of Panels: 200 square feet Latitude: 44.076 N Angle of Panels: 40.6 degrees from horizontal Panel Efficiency: 15% Average Daily Power Generated: 1.05468 kW Average Daily Energy Generated: 12.703 kWh Total Yearly Energy Generated: 4636.59 kWh Total Yearly Energy Consumed: 6391.15 kWh




Graphical Output (1/3)



Graphical Output (2/3)



Graphical Output (3/3)

Graphical Output (3/3) (Sans Irrigation Pump)

Polycarbonate:

- + Durable (10+ years)
- + Lightweight

Roofing


- + Environmentally friendly (recyclable)
- + UV resistant
- Reduced light transmission (~78%)
- Moderately expensive

Glass:

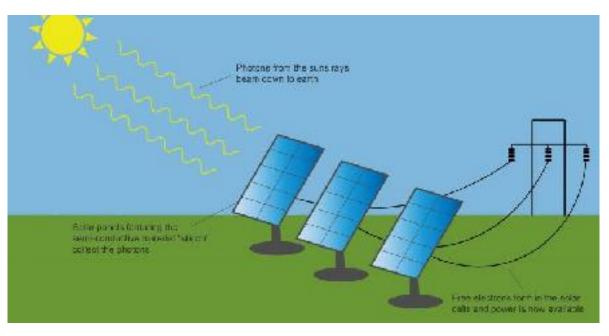
- + Extremely durable (30+ years)
- + Excellent light transmission (>90%)

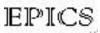

EPICS

- Expensive
- Heavy
- Poor thermal insulator

Solar Panels

Solar Panels: How much Sun


ESULTS	19,166 kWh/Year* System subject may wrige from 78,612 to 19,4342420 per year new new new heather. Stat HERE for more information.		
Month	Solar Radiation (id/h/m ² (day)	AC Energy (KWb.)	Energy Value
January	3.81	1,291	139
February	4.71	1,422	163
March	5.25	1,711	164
April	5.48	1.671	180
May	5.78	1,787	193
June	6.14	1,786	193
July	6.35	1,858	200
August	6.39	1,854	200
September	5.81	1,890	182
October	5.33	1,865	179
November	3.95	1,257	135
December	3.66	1,173	126
Innual	5.21	19,165	\$ 2,064


EPICS

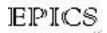
National Renewable Energy Lab (2018)

Solar Panels: How they work

- 1. The panels get sunlight
- 2. Inverters convert DC power to AC power
- 3. The current is then carried through the panels
- 4. Goes to grid or storage place

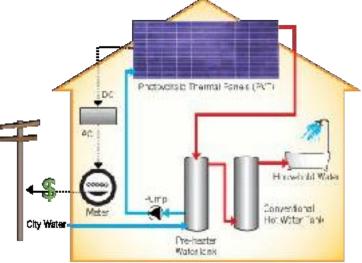
Monocrystalline

-21.5% efficiency


-uses silicon ingots manufacturing (more expensive and creates waste)
-require little space
-do well in low lighting

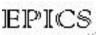
Polycrystalline

- -13%-16% efficiency
- -made with silicon melting process (less waste/less expensive)
- -Larger and take up more space
- -Don't perform well in high heat or low lighting



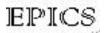
Solar Panels: Reneww House

- Jason Scheeman, Project Engineer Whirlpool
- Their goal is to take an average home and make it energy efficient therefore not perfect
- Use monocrystalline solar panels
- They sell energy back to the grid
- They have found the solar panels to be very durable some issues are
 - \circ Over heating
 - Photovoltaic thermal system
 - Poor inverters



Solar Panels: Professor William Hutzel

- Professor in Mechanical engineering Technology
- Series v. Parallel
- Net zero because they use the grid
- Inverters (Spring v. Micro)
- Match the solar panels to latitude (44 degrees)
- Moving solar panels increase max 10%
- Solar panels should be able to melt off snow
- Batteries are not that sustainable
 - Bidirectional meter


Solar Panels: GenPro

- Tanner Jobgen, Distribution Sales Manager
- Have monocrystalline and polycrystalline
 - Range from 190 watts to 325 watts
- Have both types of inverters
- Recommends combination of parallel and series
- Gird most popular and cost effective
- Different types of batteries
 - $\circ \quad \ \ \text{Flood lead Acid}$
 - 7-10 years with maintenance
 - Sealed lead Acid
 - 6 years no maintenance
 - Lithium Ion
 - Work with the grid
- Weather not an issue (more vandallism)
- Moving solar panels not a good idea

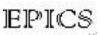
Solar Panel: Placement

Ground


- + Do not need to worry about space
- + Easy to clean off
- + More efficient
- More susceptible for people manipulating them
- Wiring would be on the ground
- More expensive

Roof

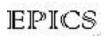
- + No one will touch them
- They cannot be manually cleared off
- They block some of the plant sunlight
- Add weight to roof


Conclusion:

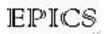
- Types of solar panels
- Placement of solar panels
- Types of batteries
- Types of power


Future Plans:

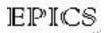
- Decide types
- Decide placement
- Decide wiring
- Continue contact with Genpro



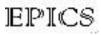
Insulation


- Goal: reduce heat loss from greenhouse
- Limited surface area to install insulation because of transparency

- Dynamic uses/application
- Closed Cell: Does not absorb moisture, vapor barrier, strong finish, long life
- Open Cell: Intended for for mild climates, not as dense R-3.5/inch, struggles with moisture

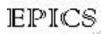


Insulation: Spray Foam Continued


• Benchmark: ReNEWW House in West Lafayette uses a Honeywell

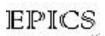
closed spray foam and siding R-6.35/inch

- Other brands have up to R-7/inch
- Intended to be DIY



Insulated Concrete

- ICF's (Insulated Concrete Forms)
 - Pre-assembled, no wood
 - 2 layers of foam with concrete poured in-between
 - Estimated R-12




Oswald Vineyard

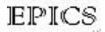
- Family made and run Greenhouse in Texas
- Insulated Concrete Forms
- Corrugated Polycarbonate panels
- Hoop House Design
- Withstood hailstorm with minor damages to polycarbonate

Plants (OLC/Mines)

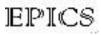
Plants categorized by soil type

• Dry soil

Plants

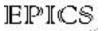

- Lead plant
- Western sagewort
- Fringed sagewort
- Cudweed sagewort
- Annual sunflower

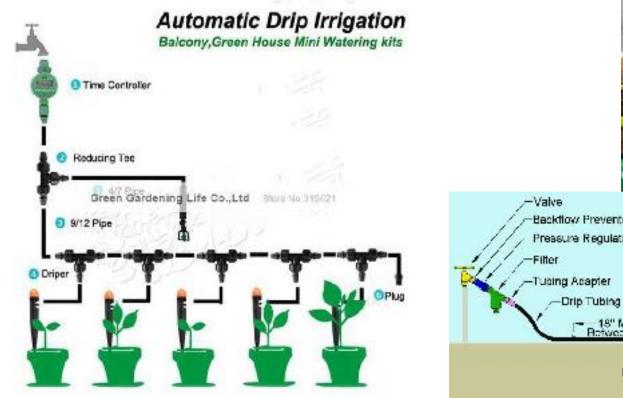
Moist soil


- Yarrow
- Oregon Grape
- Wild bergamot
- Wild Raspberry
- Stinging nettle
- Rocky, sandy, loamy soil
 - Chokecherry

• Well drained soil

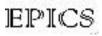
- Hawthorn
- Echinacea
- Annual sunflower
- Basil
- Rosemary
- Thyme
- Rich soil
 - Corn
 - Beans
 - Squash
- Almost any/any soil
 - Catnip
 - $\circ \qquad \text{Wild rose}$
 - Dandelion

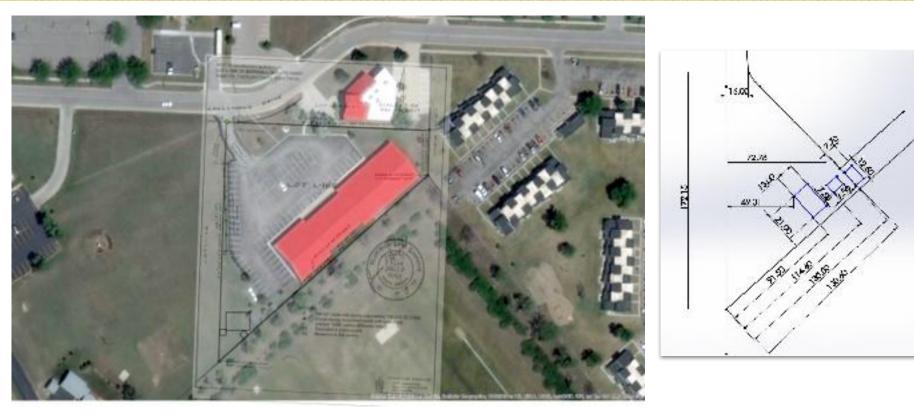

Irrigation (OLC/Mines)

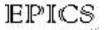

Irrigation

- Drip Irrigation System
 - Water is delivered to plants directly to the roots, through a system of pipes and nozzles embedded in each pot or growing tray/bed
 - Ability to start small and add more "taps" as needed
 - Use water sensors to detect soil needs
 - Very efficient, little to no water gets wasted and nothing gets wet except for the plants
 - Relatively easy to install
 - Cost is usually about \$25-\$50 for a kit.
 - \$23.99 for 50 ft kit found on amazon

Considering hydroponic system experimentally and for educational purpose


Drip irrigation system

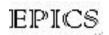




Designs (OLC/Mines)



Land Plat: Greenhouse Location



Conceptual Design Models



Transition fully into Conceptual Design

- Insulation- Compare numbers between products and types
- Solar Panels
 - Create multiple possible decisions on type and placement
- Matlab code
- Looking at Funding

Questions?

