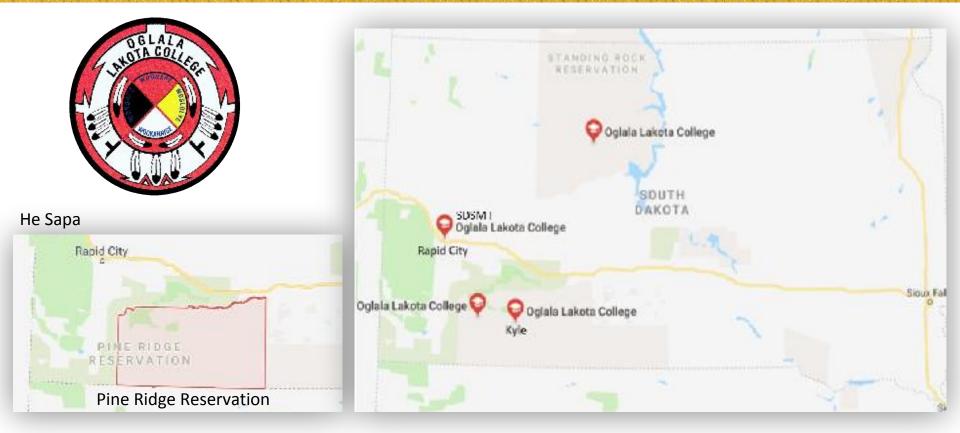
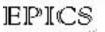

LAKOTA Food Sovereignty Project Spring Design Review April 19th , 2019

Three Universities Partner Together for One Vision

SOUTH DAKOTA

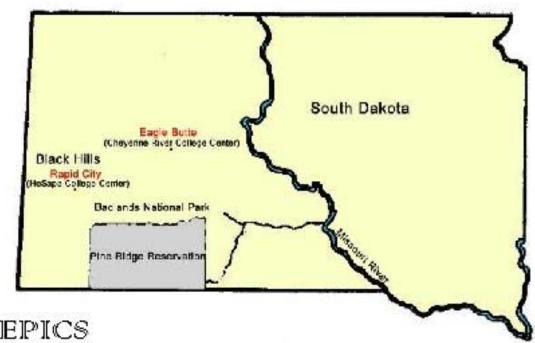
SCHOOL OF MINES & TECHNOLOGY




LAKOTA Food Sovereignty Project

This work is the combined effort by students from Purdue, SDSMT and OLC

Project Partner ~ Oglala Lakota College

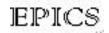


Community Partner Information

Food Desert: An area where either a substantial number or share of residents has low access to a supermarket or large grocery store (USDA)

- 80% limited access to grocery stores
- 95% of food from off-reservation sources
- Food cost 10% higher

Funding Partners for our vision

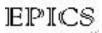


Ford College Community Challenge

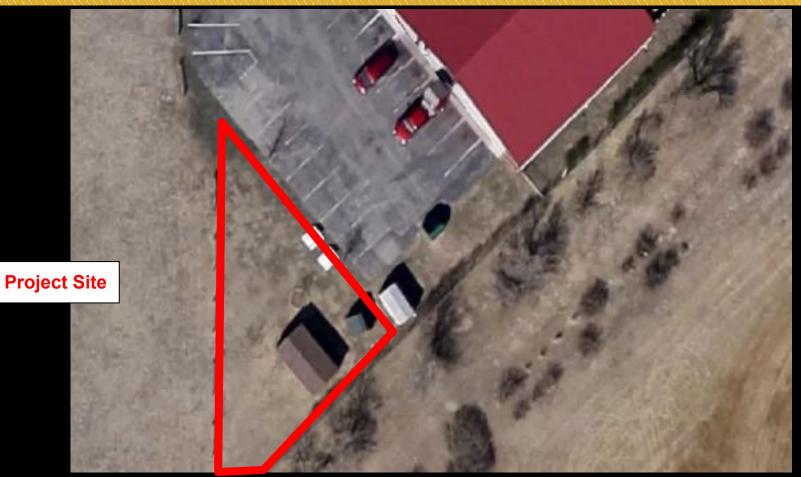
Greenhouse

PURDUE GREENHOUSE TEAM MEMBERS

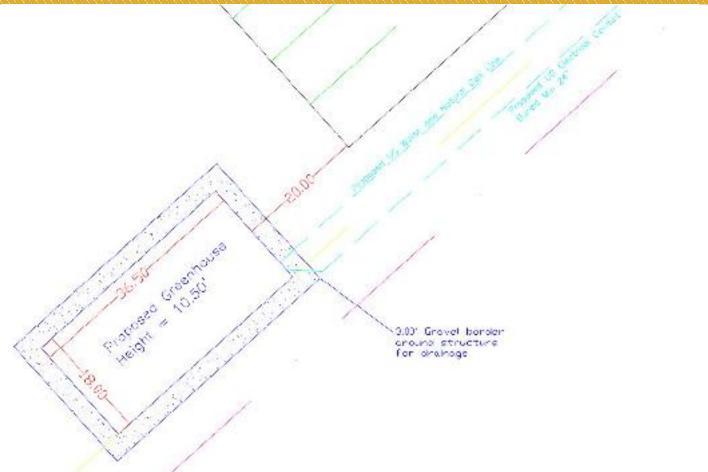
Marshall Beard Webmaster First Year Engineering


Bridget Fitzgerald Design Lead First Year Engineering

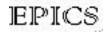
Katie Johnson Aerospace Engineering


Thao Nguyen Project Partner Liaison Chemical Engineering


Overview of OLC Rapid City Campus Area


He Sapa College Campus (Southwest corner)

Proposed Greenhouse Site location



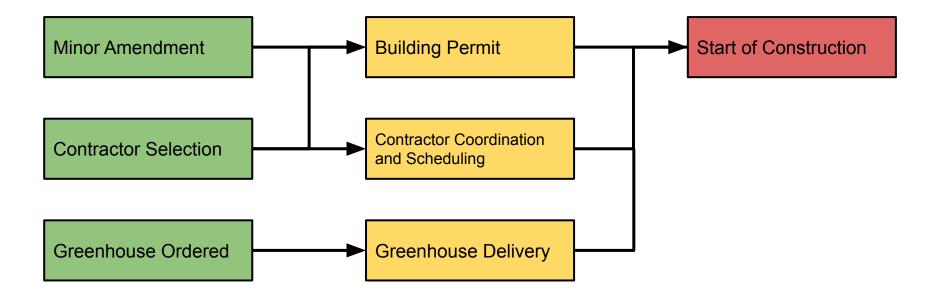
Proposed Site (Enlarged)

Greenhouse Structure

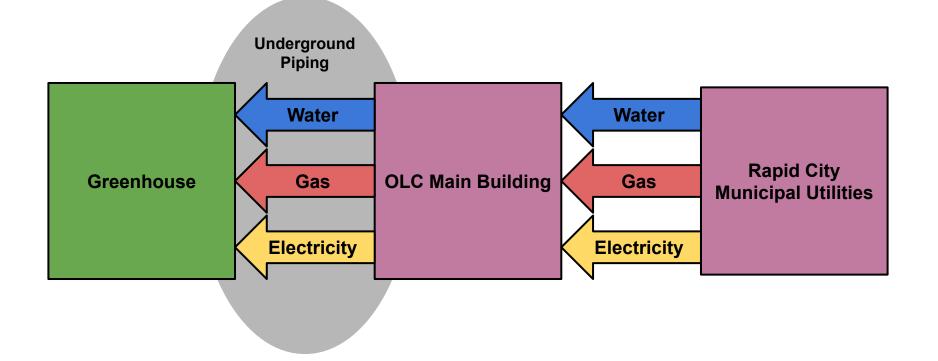
- Pre-Engineered Kit from the Greenhouse Megastore
- Specs
 - Model Name: Junior Teaching Greenhouse
 - 36' x 18' x 10'
 - Pre-selected gas heater, ventilation fans, and thermostat
- Benefits
 - Sized to fit the site
 - 30 lb load rating to resist extreme weather
 - 10 Year Warranty

Exterior View Example

Interior View Example



Construction Budget


Utility Breakdown*				
Line Item	Cost			
Water*	\$8,438.79			
Electricity*	\$5,217.15			
Gas*	\$3,229.00.			
Total	\$16,888.94			

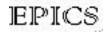
Overall Budget						
Line Item	Cost					
Greenhouse Kit	\$15,394.50					
Foundation	\$17,400.00					
Utilities*	\$16,888.94					
Interior Items*	\$8,000.00					
Misc*	\$3,000.00					
Total	\$60,682.94					
Available Funds	\$75,000.00					
Surplus	\$14,317.06					

* Denotes Non-Finalized Pricing

Utilities Overview

Utilities Breakdown

• Natural Gas

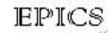

- Underground line from OLC main building to the greenhouse to power the heater
- To share a trench with the water line

• Water

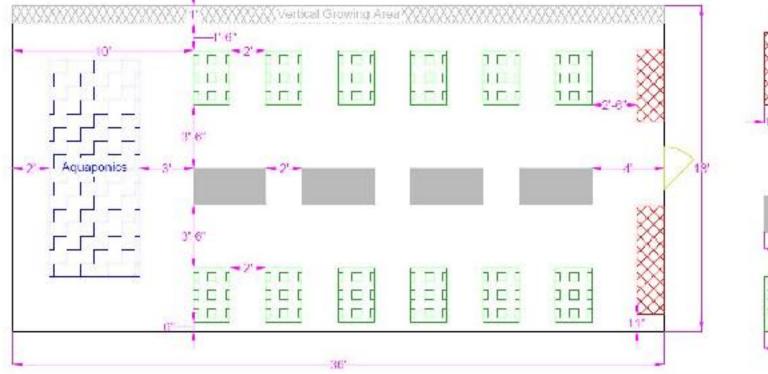
- Main source is a line from the OLC main building
- Water and Gas installation to be performed by Loyal Plumbing

• Electricity

- 100 Amp feeder from college's main panel to a new panel in Greenhouse
- Electric installation to be performed by ACE electric

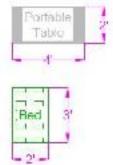


Interior Design Layout


- The interior of the greenhouse will be composed of several different sections
 - Growing Bed Layout
 - Interior Components Selection
 - Irrigation
 - Vertical Trellis for climber plant species

In Progress:

• Aquaponics research

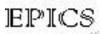


Bed Layout Finalized

Shelving/Storage

Interior Raised Beds Final Decision

Houzz Raised Planter Bed


Price: \$143.99

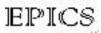
Dimension: 36"x24"x36"

Materials: cypress wood, pressed

- Easy access
- Shelf underneath for storage
- Pest resistant

Portable Tables Final Decision

Walmart Fold-in-Half


Price: \$47.99 ea

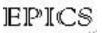
Dimension: 48"x24"x29"

Weight capacity: 300 lb

- Portable, easily cleaned, easily stored
- Fit for demonstration and touring

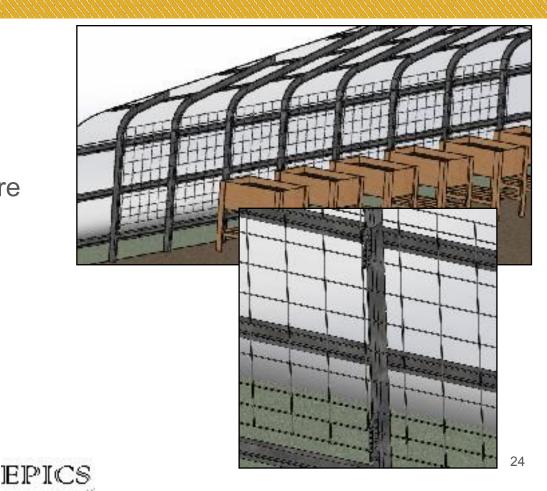
Home Depot, Iron Horse 2300 series

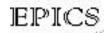
Price: \$82.98 ea


Dimension: 18"x36"x72"

Weight capacity: 2300 lbs

Material: zinc plated


- Easy to clean
- Easy to assemble
- Adjustable shelf height


Vertical Trellis

- For growing climbing plants
- Located on North wall
- Trellis: cattle panel
- Mounting: Angle steel and wire

Vertical Trellis - Parts List and Price

Item Name	Store	Item Price	Quantity	Item Total
Cattle Panels (16 ft. 4-Gauge)	Runnings	\$28.00	2	\$56.00
Steel Perforated Angle (1-1/4" x 1-1/4" x 48")	Menards	\$9.89	3	\$29.67
Steel Galvanized Wire (14-Gauge 50')	Menards	\$2.99	1	\$2.99
Stainless Steel Sheet Metal Screws (#14 x 1" Hex)	Menards	\$6.49	3	\$19.47
Galvanized Flat Washer (1/4" Grade 2)	Menards	\$2.99	1	\$2.99
			Total:	\$111.12

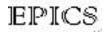
	Weighting	Overhead Sprinklers	Drip Irrigation and Table Sprinklers	Overhead Misters	Hand Watering	Plug and Play
Safety	5	4	4	4	4	4
Running Cost	5	3	4	4	4	4
Cultural Impact	5	3	3	3	3	3
Flexability / Reconfigurability	4	4	3	1	5	5
Warranty	4	5	5	5	5	5
Labor (Higher # = Less Labor)	3	4	4	4	1	4
Water Consumption	3	2	5	4	4	4
Sustainability	3	3	4	4	4	5
Maintence (Higher # = Less Work)	3	4	3	4	5	4
Initial Cost (Higher # = Cheaper)	2	3	2	4	5	4
Expansion	1	2	3	2	5	5
Total:	190	133	142	137	152	157

Irrigation System Decision - Plug and Play

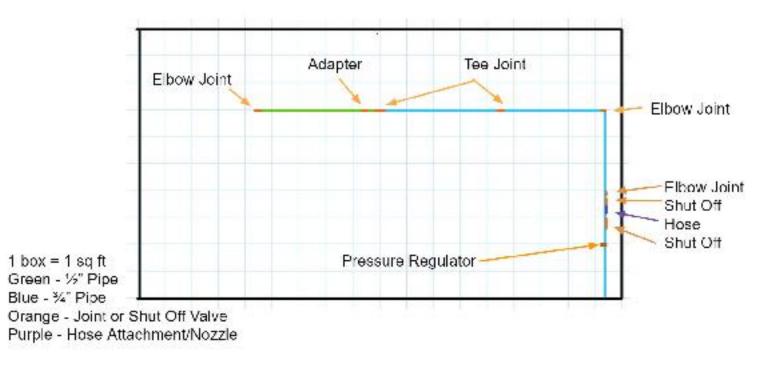
Pros

Maximum flexibility compared to other systems

Minimal water loss

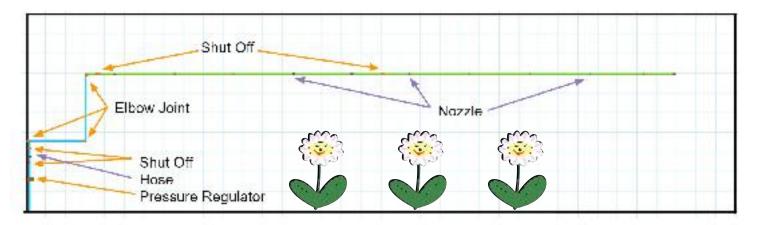

Integration into other types of irrigation

Cost effective

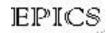

<u>Cons</u>

Higher level of initial work

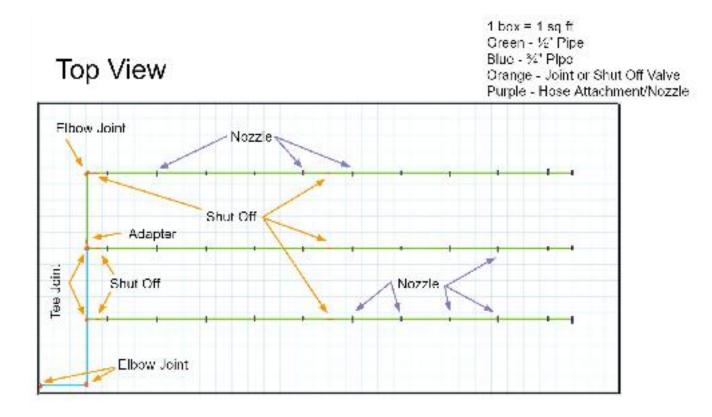
Could be future cost to adapt to a different system (Ex. change from drip to sprinklers)



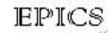
Front View/Door View

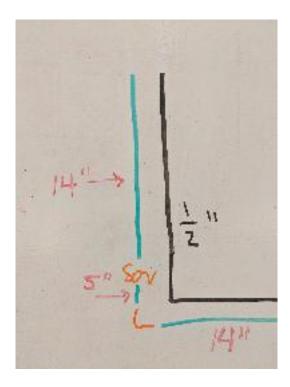


Irrigation Drawings

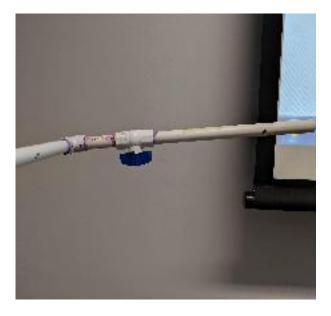

Side View

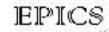
1 box = 1 sq ft Green - ½" Pipe Blue - ¾" Pipe Orange - Joint or Shut Off Valve Purple Hose Attachment/Nozzle

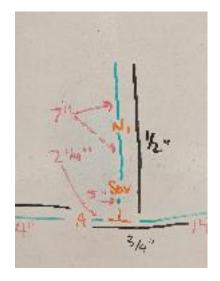

Irrigation Drawings

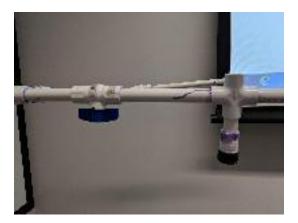


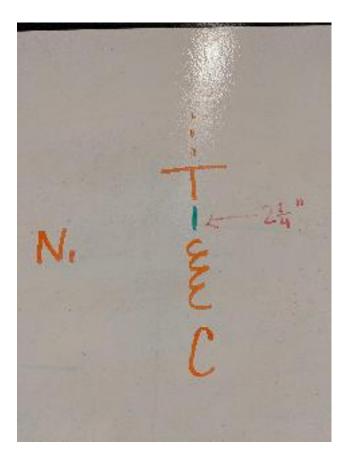
Irrigation Parts

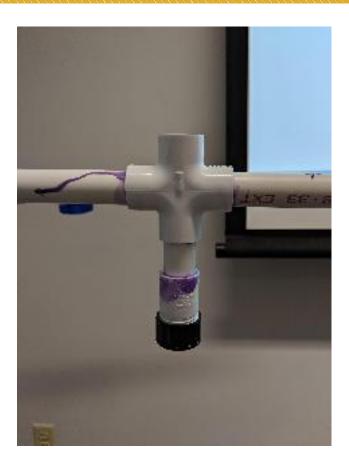

- 1/2" and 3/4" PVC Pipe
- ¹/₂" and ³/₄" Ball Valves
- 1/2" and 3/4" T Joints
- ¹/₂" and ³/₄" Hose Attachments
- ³⁄₄" to ¹⁄₂" T Joint
- ¹/₂" and ³/₄" Elbow Joints
- Adapter Parts from ³/₄" to ¹/₂"

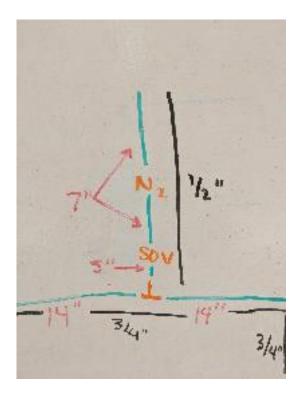

- Hose Cap and Control Valves
- UV Resistant Paint
- Hose
- Pressure Regulator
- PVC Joint Compound
- Ceiling Suspension

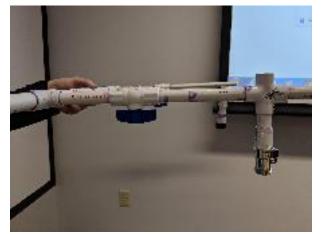


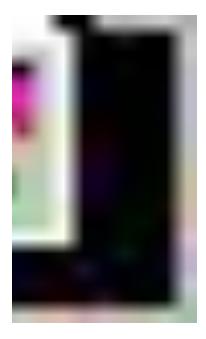


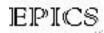


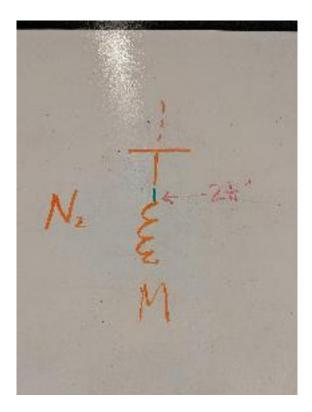


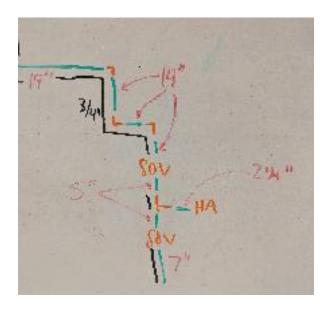


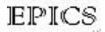

EPICS

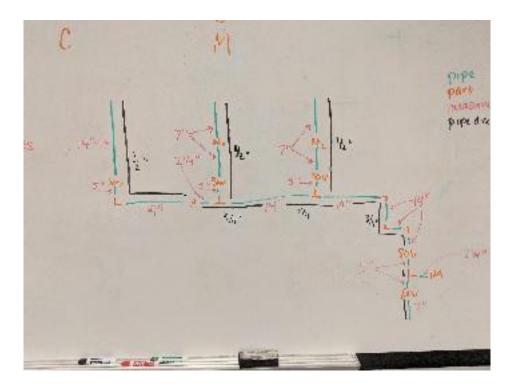


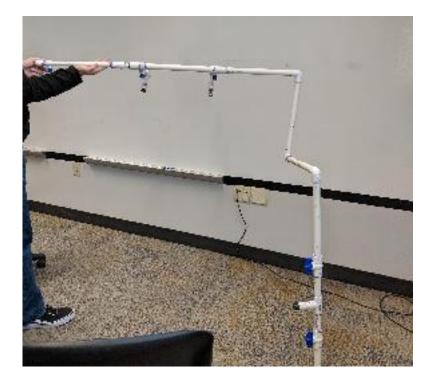







Irrigation Model





Irrigation Model

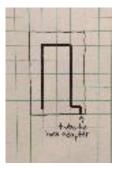
Irrigation for Each Bed

Emitters

³/₄ inch tube running the length of the bed

Emitters attached to the tube use 4mm tube

\$630



Dripper tube

1/4 inch dripline laid out around the bed

Stakes to keep it in place

\$480

Operating Budget

Water

Commercial 2019 pricing:

5% meter - \$8.65

³⁄₄ meter - \$11.13

1 unit of water - \$3.83

1 unit is about 748 gallons of

wai	ter

	⁵ ‰ meter 3¼ meter	
Monthly	\$12	\$15
Annually	\$150	\$180

Electric

Commercial rate for electricity is about 9.73 cents per kWh

\$15 base charge

Estimate reflects what is included in the kit.

Annual	\$518
--------	-------

Gas

\$7.03 per dekatherm residential \$6.07 per dekatherm commercial

Gas heater would not be run year round

Used earlier heating calculations from our project partner for our cost estimate.

	Residential	Commercial		
Annual	\$132	\$114		

Water				
Month	\$, 5% meter	\$, 3/4 meter		
January	12	15		
February	12	15		
March	12	15		
Inc	12	15		
May	12	15		
June	12	15		
July	12	15		
August	12	15		
September	12	10		
Oclober	12	15		
November	12	15		
December	12	15		
Annual	150	180		

Electricity	
Month	\$
January	44
February	40
March	44
April	43
Мау	44
June	43
July	44
August	44
September	43
October	44
November	43
December	44
Annual	518

	Gas	
Month	Price 9, residential	Price \$, commercia
January	49	42
February	23	19
March	-23	-20
April	-61	-52
Мау	108	01
June	-147	-127
July	-191	-105
August	-189	-163
September	-132	-114
October	72	62
November	6	5
December	50	47
Annual	132	114

Additional Components

PURDUE GREENHOUSE TEAM MEMBERS

Jacob Lundgren Civil Engineering

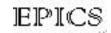
Abigail Thompson First Year Engineering Sami Bijonowski Civil Engineering Russell Kim First Year Engineering

Overview

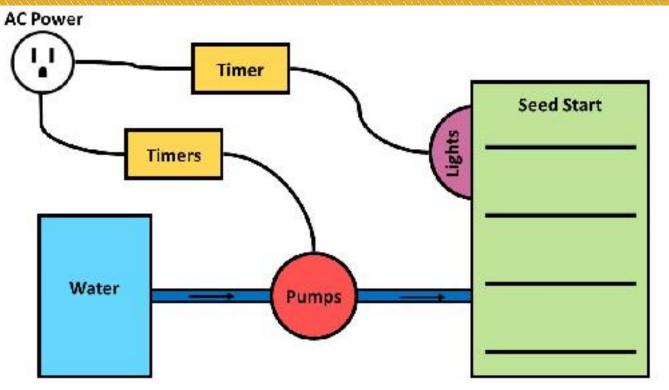
Seed Start

Aquaponics

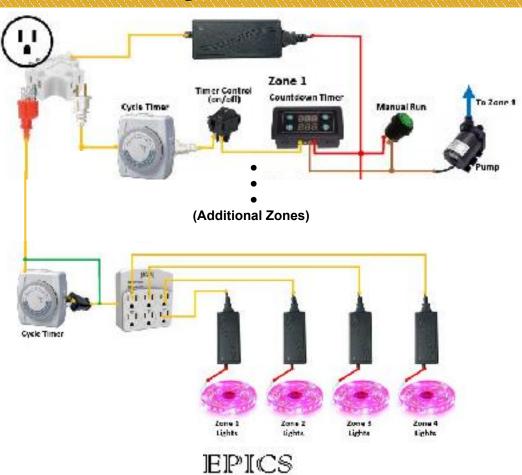
Exterior Ideas


Rainwater Collection

Compost


Heating Efficiency

Seed Start


- Start seeds prior to growing season
- Automated lighting and watering
- Four independent zones
- Room for 1200 4500 pods
- Collaborating with another SDSM&T EPICS team

Seed Start - System Diagram

Seed Start - Control System

Seed Start - Components and Prices

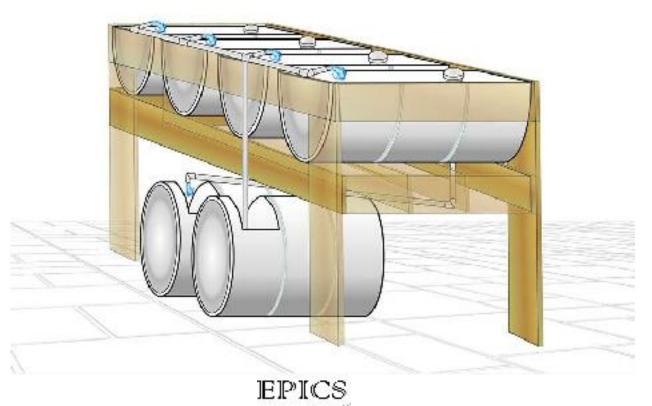
Lighting	Irrigation	Structural & Growing
LED StripsTimers	 DC Power Supply Pumps Timers Water Storage 	 Shelving Unit Vinyl Sheeting Growing Supplies
\$103.64	\$268.01	\$353.91

Total: \$725.56

Seed Start - Construction Progress

Assembled shelf Added lighting

Cut vinyl covering Began Sewing



Finished control board Started wiring components

Small system example:

Aquaponics Components

Waterbed material

- 55 gal barrels or larger gal barrel
- Fishtank

Growing media

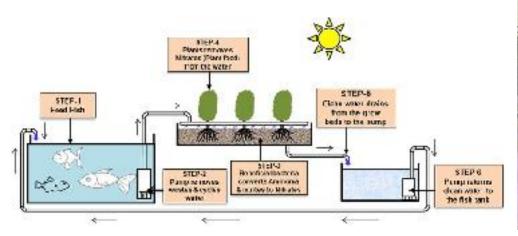
- River rock
- Pea size gravel

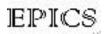
Recommended plants

- Anything leafy (lettuce, kale, etc.)
- Basil
- Mint
- Chives

Recommended fish

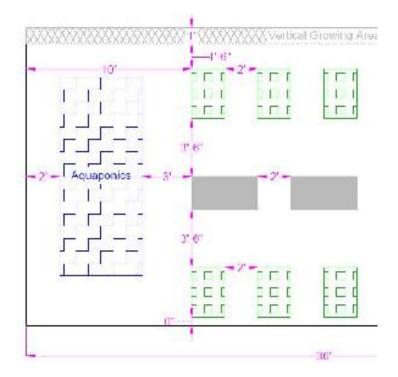
- Tilapia
- Blue gill
- Sunfish
- Crappie
- Koi
- Goldfish

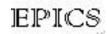




Western Dakota Tech Aqua 2.0

Estimated cost ~ \$3,450





Aquaponics Questions/Considerations

- Addition of chemicals to the water for pH control
- Ratio of water to plant
- Degree of automation
- Aeration
- Heating and living space for the fish
- Algae

Exterior Ideas

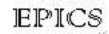
- Outdoor arbor
 - Firepit
 - Log seating
 - Trees Circle of Ponderosa Pine Trees

Rainwater Collection Systems - Initial

Wet System - Very complicated to install, hard to maintain

Dry System - Has to be next to house

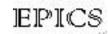
EPICS


Rain Barrel - only holds 50 to 100 gal.

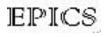
Rainwater Collection Systems

Gutter system voids warranty on Greenhouse

Compost


- Wooden
- Homemade
- Hard to rotate
- Hard to remove

- Light-weight
- Easy to use
- Produces the most compost



- Heavy duty
- No smell
- Holds the most compost

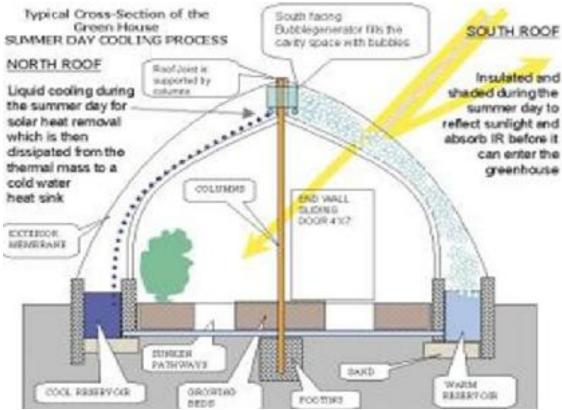
Compost

Compost Options	Durability x4	Smell x3	Efficiency x3	Size x2	Price x3	Ease of use x5	TOTAL
Option 1 - Wooden	16	9	6	10 ~ Depends	15 ~ \$125	10	66
Option 2 - Tumblers <u>Home Depot</u>	12	9	15	8 ~ 100 gallons	~ \$250 9	25	78
Option 3 - Plastic Bin <u>Gardeners Supply</u> <u>Company</u>	20	2	9	10 ~ 240 gallons (38 ft^3)	12 ~ \$200	10	73

Greenhouse Heating Efficiency

Thermal curtains are insulating blankets used for heat retention at night and on cold days. They can also be used for summer shading or light control.

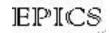
Cost of installation is about \$2 per square foot


Estimated 52% percent savings on the energy cost with a fully equipped greenhouse

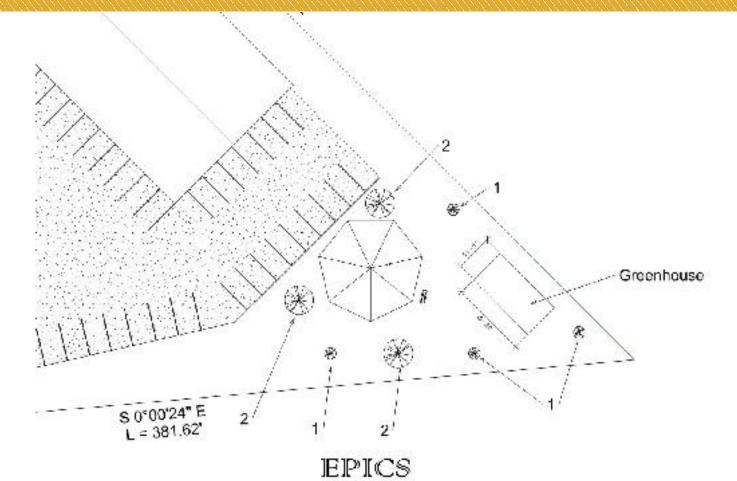
Alternatives

Inject foam between double poly films

50% energy savings

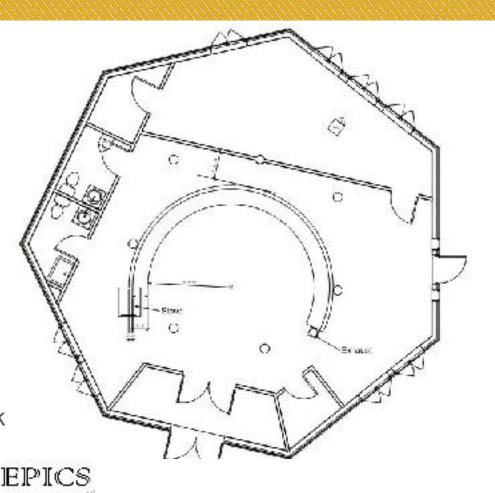


EPICS - Fall 2019


- South Dakota Trip
 - Possible Kyle Greenhouse
- Greenhouse Add-ons
- Aquaponics

Cultural Center

- Teaching
 - Augments learning opportunities provided by the greenhouse
 - Collaborative non traditional classroom environment
 - Additional meeting space for project-based learning teams
- Cultural Enrichment and Preservation
 - Display of cultural items
 - Community gathering area



Site

Design Overview

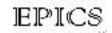
- 7 Sided Wood Framed Building
- Multi-Purpose Main Room
- Rocket Mass Heater
- Small Conference Room
- Low Maintenance
- Open Truss System
- Estimated Cost of \$250k \$300k

Design Overview (Elevation View)

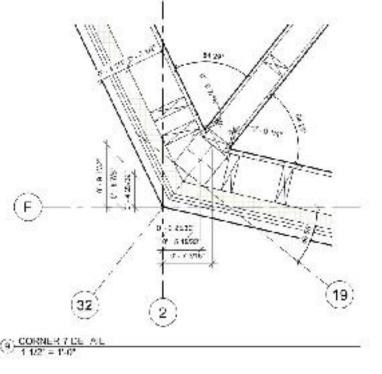
Exterior

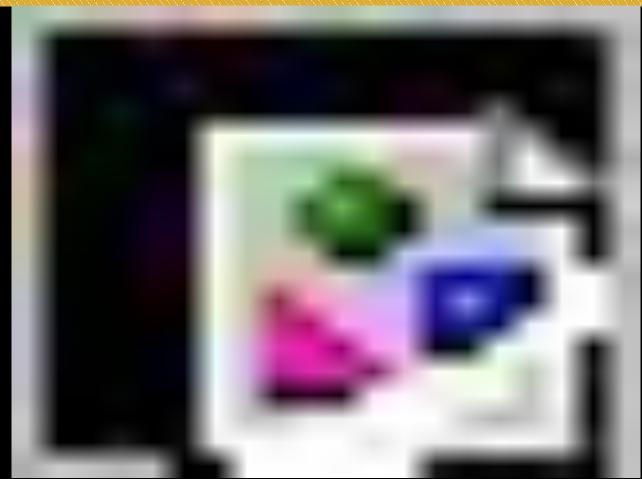
Interior Renderings 1

Interior Renderings 2


Interior Renderings 3

Cultural Center Semester Progress

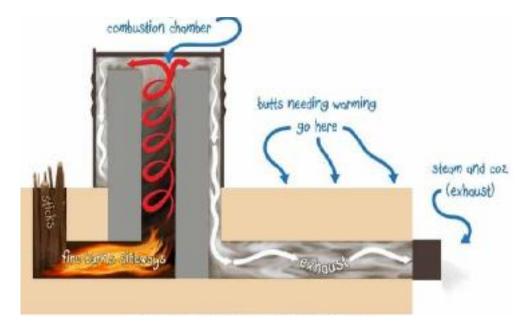

- Cultural Center Wall Mock-Up
- Rocket Mass Heater Prototype
- Construction Documentation Development
 - Updated set of drawings
 - Complete material specifications
 - Engineer's estimate (+/- 10%)

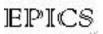

Cultural Center Wall Mock-up

- Two 8' Sections
- Including Corner Assembly
- Partial to Full Construction
- Teaching Device

Wall Pictures

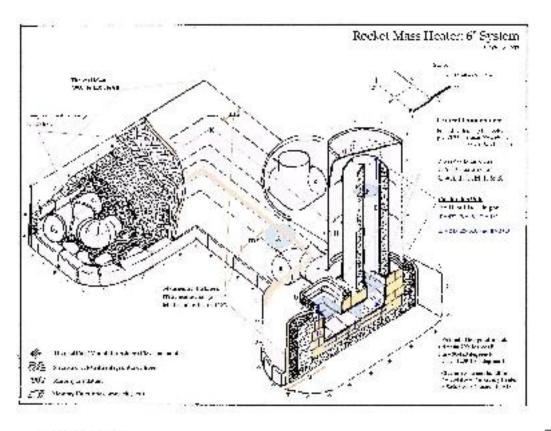
Wall Pictures Cont.


What Did We Learn from the Wall?


- The framed walls aren't that hard to construct
 - Important depending on the professional experience of our workforce (volunteers)
- A more practical way to build the wall joints
 - Original detail wasn't realistic
 - New detail involves lag bolts to hold the column and double studs in alignment
 - The odd angle of connection still presents a issue
- A 7-sided building will present numerous issues
 - Odd angles make wall joints at column locations difficult to construct
 - Construction costs significantly increased due to necessity of purchasing custom parts for things like siding, trim material, and truss connections

Rocket Mass Heater

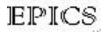
- Type of wood burning furnace
- Heats self through conduction and then the air through radiation
- More efficient
- More environmentally friendly
- Can heat a large space quickly and easily
- Mass acts as a thermal reservoir to keep a space warm for an extended period of time

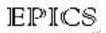


Purpose of Rocket Mass Heater Prototype

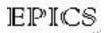
- Preplanned Design
- Testing materials and construction methods
- Testing heat output and

ventilation concerns




What Did We Learn from the RMH? 1

- Need for air circulation system
 - Small amounts of smoke leakage likely to occur
 - Temperature differential based on proximity to the heater
 - Ceiling fan at minimum, HVAC system likely
- Barrel Heat
 - Presents safety hazard to people and flammable materials
 - Need some system to limit access while preserving usability
 - Definitely adequate to use as cooking surface


What Did We Learn from the RMH? 2

- Heat Duct Size and Shape
 - Utilized a 6" exhaust duct in prototype. Team recommends increasing to 8"-10" duct to limit frictional losses and increase distance the heat can be transmitted through the bench
 - Bends reduce maximum travel distance of the exhaust by ~5 ft. Final design should limit their use.
- Cob
 - Works well at radiating heat
 - Difficult material

For Future Teams

- Cultural Center
 - PE Review of the Cultural Center
 - Review by local PE that can give detailed feedback and work with student groups
 - Make needed changes to bring structure up to code
 - Review by PE in SD to get plans / specs ready for constructions
 - Finalize location
 - Secure funding
 - Pre-construction Process
- Future Greenhouses
 - Assess local needs and resources
 - Identify viable locations
 - Secure Funding
 - Reference Greenhouse How-To Manual
 - Greenhouse additions and improvements

