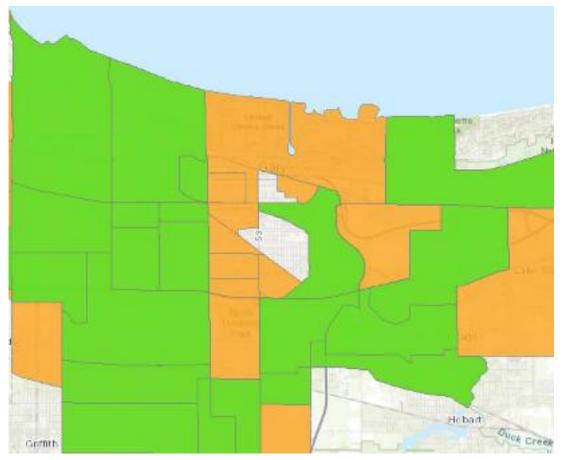


Urban Farming: **End of Semester Review** EPICS / FURDUE

https://epics.ecn.purdue.edu/ns/about_spring_2017.html

Agenda

- Introduction
- Team Garden
- Team Structure
- Questions and Comments



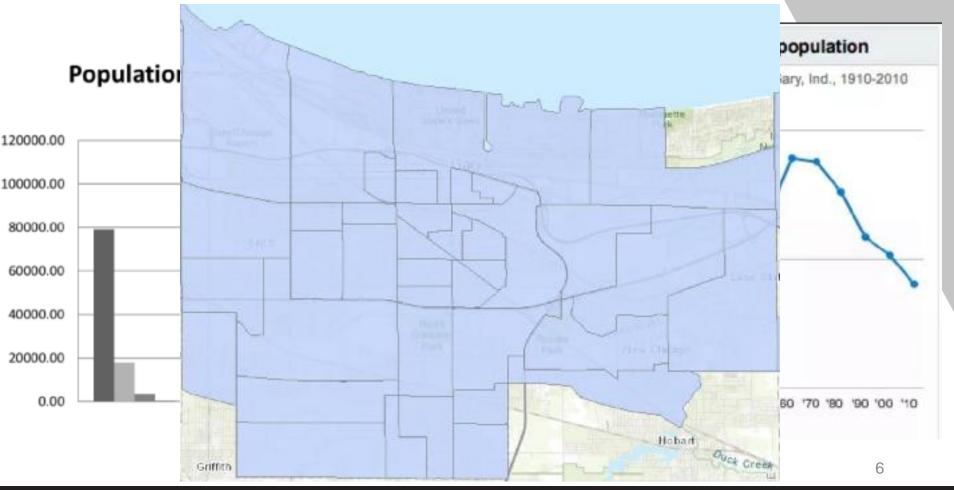
Framing the Issue - Food Desert

- Communities underserved by quality grocery stores
 - Distance to store over 1 miles in urban areas
 - Disproportionately in poor communities
 - 55% found in communities with median income less than \$25,000
- Limited Options on healthy food
 - High calorie, processed unhealthy food available
 - Creates poor diets and health effects

Framing the Issue - Food Desert

Orange =10 miles for rural and $\frac{1}{2}$ mile for urban Green = 10 miles for rural and 1 mile for urban

Framing the Issue - Gary, Indiana


- Past
 - Formed by U.S Steel 1906
 - A "model city"
 - 1960's High point
 - population ≈ 180,000

Framing the Issue - Gary, Indiana

Framing the Issue - Gary, Indiana

- Present
 - Population of 77,000
 - 81.5% of population is Black
 - 36% of population lives under the poverty line
 - \$28,895 median household income for Gary
 - \$43,995 median household income for Indiana

Project Partner - Peace Garden & Farms

- 4 workers
- 6.2 acres of land
- Grows food for 85 families

Stakeholders

- Marty Henderson
- Gary Youth
- Members of community
 - Healthier food provided
- Re-entry of justice served individuals
- Local grocery stores

Where EPICS Helps

- Our goal is to build a rooftop garden that is both beneficial and accessible to those who need it in the greater population of Gary.
- To do this, we have split into two teams:
 - 1. Garden: in charge of what goes in the garden.
 - 2. Structures: building the garden itself and making sure the building can support it.

Urban Farming Project

Fall 2018 End of Semester Design Review

Farm Design Team Members

Renae Kramer- Natural Resources and Environmental Science

Alyssa McNarney- First Year Engineering (Chemical Engineering)

Taylor Robbins- Anthropology

Mokammel Sanju- Environment and Ecological Engineering

Neil Sharma- First Year Engineering (Aerospace Engineering)

Bradley Turner- First Year Engineering (Chemical Engineering)

Troy Weber- First Year Engineering (Environmental and Ecological Engineering)

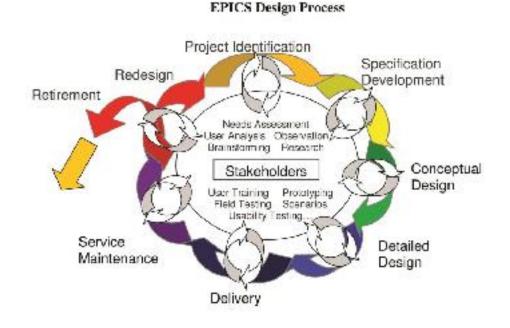
Hajera Zemy- Computer Science

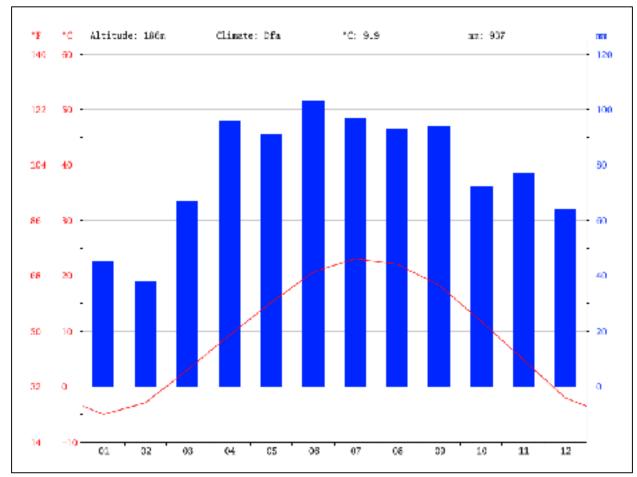
Problem Statement

- Determining the best soil type and or organic soil mixture that is compatible with the weight requirements of the roof and also meets plant nutritional needs
- Determining crop types compatible for growing in rooftop conditions i.e different weather patterns and rainfall.

Site Visit

- Omni Ecosystems (Chicago, IL)
- Uncommon Grounds (Chicago, IL)




Specification Development Phase

- Context
 - Rooftop Garden in Gary, IN
- Stakeholder Profiles
 - Marty Henderson
 - Citizens of Gary, IN
- Prototype
 - Rooftop Garden in Purdue
 - Task analysis
 - Partner approval
- Comparing to other products
 - Omni Ecosystems-soil

Weather Research

Average Summer Temp

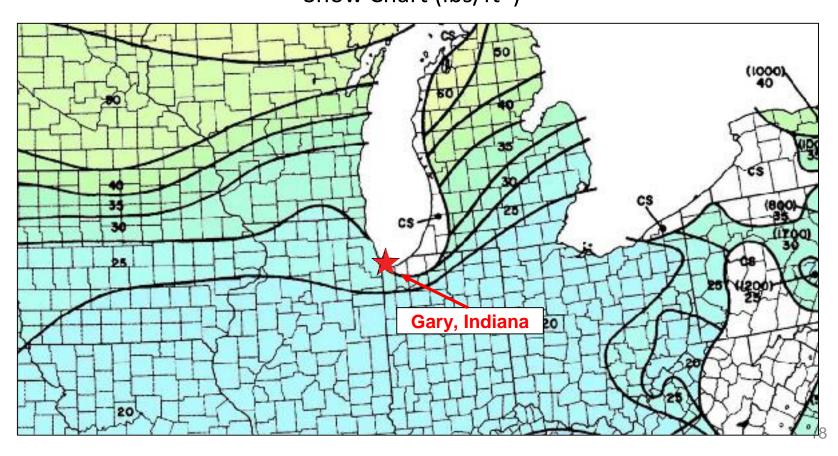
• 25°C

Average Winter Temp

• -3°C

Average Rainfall

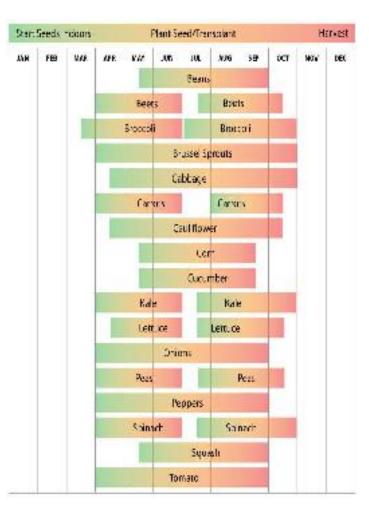
• 96cm


https://en.climate-data.org/location/17511/

ROOF SURFACE	DEGREES FAHRENHEIT ON A SUNNY, 90- DEGREE DAY
Black roof	140-190
Aluminum reflective coated	Up to 68 degrees cooler than black roofs
Gravel	125-140
Unpainted metal	138-145, but feels hotter to the touch than a black roof
Painted Metal (ex: BASF Cool Paint)	105-115 or up to 42% cooler than unpainted metal
White	102-120
Vegetative	90

Weather Research cont. Snow Chart (lbs/ft²)

Picture obtained from seatle.davidjoel.co



Plant Data

Plant Data

https://www.ufseeds.com/learning/planting-schedules/Zone-5-Planting-Calendar

Plant Data cont.

Criteria	Criteria Weight	Cabbage	Lettuce	Tomatoes	Sweet Potatoes	Green Beans	Collard Greens	Swiss Chard
Ability to grow with other plant	x1	2	5	2	1	2	4	4
Maintenance	x2	4	4	1	3	1	3	3
Amount of water	x3	4	4	4	2	2	4	4
Nutrition (based on calories)	x4	2	1	5	5	5	4	4
Amount per sq ft	x5	5	4	2	2	3	4	4
Total Points	5	55	49	46	43	45	58	58

Picture of building

Soil research

General Soil Types	Density (lbs/ft ^s)	Weight of Soil 12'x12'x8' (lbs)	Total Weight V Plant Weight	Vith Water and
Clay Pebbles	21	14	3	32
Peat Moss	72	48	6	36
Loam	80	53.4	71	1.4
Silt	81	54	7	/2
Peet mass air Abraeal soctaness based poting mit, containing portio.	Segaric Mechanics Healing Mit Ar abstration for anothing gotien back, this rish operated operators, pro- back, occurrentiates works addings.	Organic Neckanics Parting Soll This assurises with includes composited and bank, composited with the castings and period.	Hit Woos Prime Petiloss smask from respektivessaters and obstrate labor intersets a per smith to:	Organic Nectornics Roe Indis Rice Indis are a substitute for porities of scanic glass the reminise fase hash to process.

https://img.washingtonpost.com/rf/image_480w/2010-2019/WashingtonPost/2017/05/09/LocalLiving/Images/PEATMOSS03.JPG?uuid=q5VXIj

Midwest trading horticultural soil information

Product code	Description	Weight (lbs/ft ³ saturated)	Cost per cubic ft	Water retention (%)	Water Permeability (mm/min)
APPS	A blend of pine bark, peat moss and coir, also comes with a controlled release fertilizer	62.8	4.50	75	17.6
CM63	Grower mix with pine, has bark and compost I and sand	70.5	3.80	67	11.9
CM66	Grower mix with perlite. Lots of peat, perlite sand and compost	63.8	4.44	62	12.8
PM35	Planter soil mix with pine, soil sand and compost	88	3.00	56	15
MW intensive	Green roof medial with lightweight aggregate and compost	76.7	Unknown	52	19.6

Laws and Regulations for Producing and Selling

- A scheduled process must be followed strictly throughout the growing and harvest phase, with an accurate record
- Acidified (Pickled) Foods (regulation 1 CFR 114 and 21 CFR 108.25 for FDA regulated products)
- Certain food products and crops will need to be heat treated after harvest
 - Packaged/Canned food

Survey

- Giving the community a voice
- Participants will be families that Marty Henderson works with through Peace Garden and Farms
- Survey format will be dependent on optimizing quality and quantity of information
- Uncertainties about Institutional Review Board (IRB)

Next steps:

- Test the soil
- Plan growing seasons
- Plan crop rotations
- Create guide for maintenance of garden

Infrastructures

Infrastructure Team Members

Alex Pusateri - Civil Engineering (Design Lead) Tasha Geisler- Civil Engineering Jake Rokop - Electrical Engineering Anjas Kapur - Electrical Engineering Jonathan Moore - Computer Science Harley Clark - Biomedical Engineering Claire Bhamani - Biomedical Engineering Alex Roberts - Environmental and Ecological Engineering

Overall Team Goal

 To determine if the building is capable of holding a rooftop garden.

Structure Goals

• Determine capacity and maximum safe load

Capacity > Demand

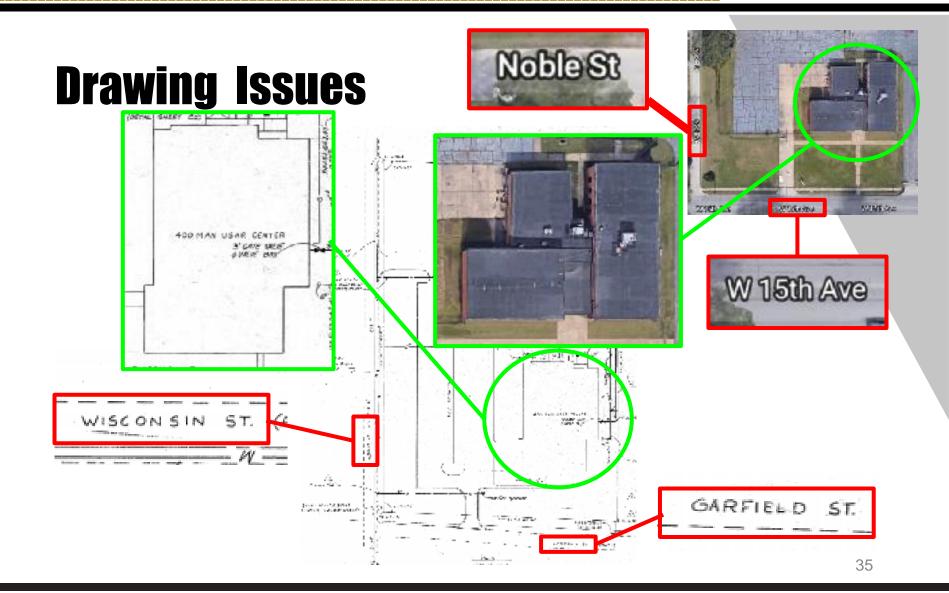
• Capacity must be greater than demand by a certain amount to be considered safe.

Team Trip

- Army Reserve Building
 - Took measurements
 - Looked at building type and roof reinforcement inside the building

Infrastructure Semester Breakdown

Structures:	 Went through and reviewed building drawings Weight loads Estimating Contacted structural Engineers
Rest of Semester	1. Irrigation/Drainage Research
	2. Roof Access Research
	Roof Safety Research



Organizing Drawings

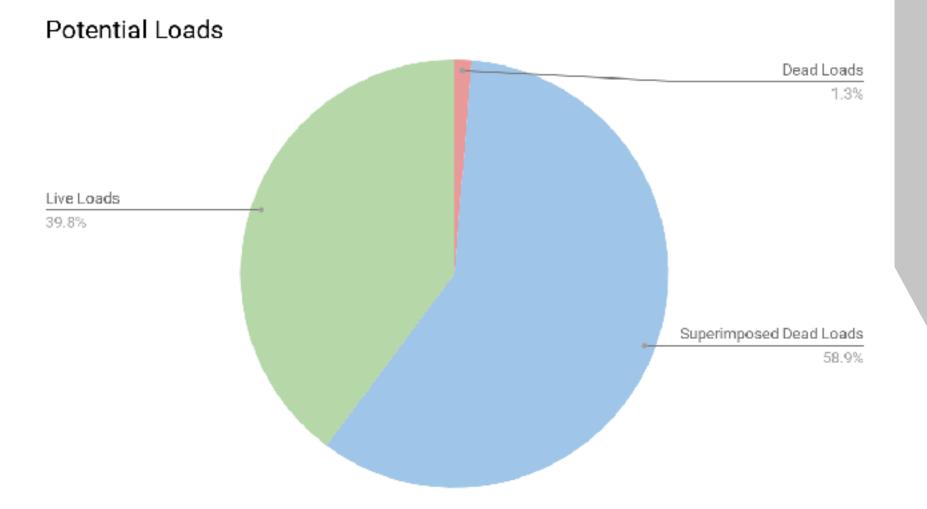
- Categorical System:
 - red- important for structures
 - blue- important for irrigation
 - yellow- not important at this time
 - orange- important for both teams

13	RVAC Schedule
14	HVAC Sections
15	Electric Layout
16	Plumbing Floorplan
17	Roof Framing Plan
18	

Finding the Drawings

- US Army Corps of Engineers
 - headquarters archive
- "Blueprints for a Civilian Soldier: A Nationwide Historic Context Study of US Army Reserve Centers"
 - Four drawings given
 - printed
- FOIA
 - at least a year to process

Structural Engineers Contacted


Thomas Engineers	SilverCreek		
Enspect Engineering Consultants	Building Department of Gary		
Superior Engineering	MECA Engineering		
DLZ Engineering	RJ Mycka Inc		

Potential Loads

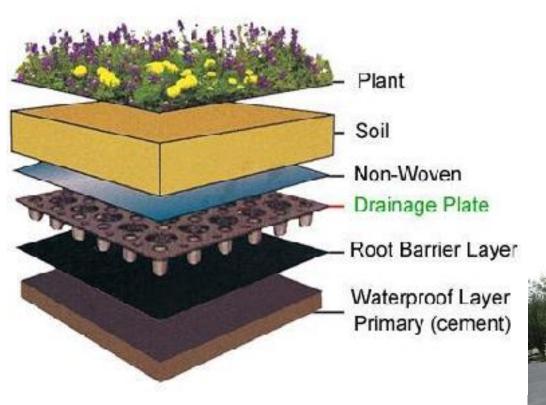
- Determining potential demand on the building
 - Dead Loads
 - Weight of the roof material
 - Superimposed Dead Loads
 - Weight of saturated soil on the roof
 - Live Loads
 - Snow loads, People loads

New Direction

- Documentation Focus
- Mid-Semester Review Suggestions
 - Safety and Movement of Materials
- Added Loads
- Get Expert Advice
 - Sue Khalifah

Irrigation and Drainage Progress

- Conducted research into different irrigation methods
- Determined cost, efficiency, and weight
- Figure out if the existing drainage system fits into our irrigation system.
- Drawings highlighting drainage system were unclear.



Irrigation Decision Matrix

Criteria	Weight	Drip Irrigation	Sprinklers	Micro-spray	Subsurface
Garden Health	3	4	1	2	5
Cost	4	4	1	5	3
Efficiency	5	1	1	2	5
Ease of Maintenance	2	5	4	4	2
Ease of Installation	1	5	2	4	3
	Total.	63	22	48	55

Roof Access

3 main options that we are considering to get materials onto the roof:

- 1. Winch/pulley system
- Material lift/moving platform
 Conveyor belt system

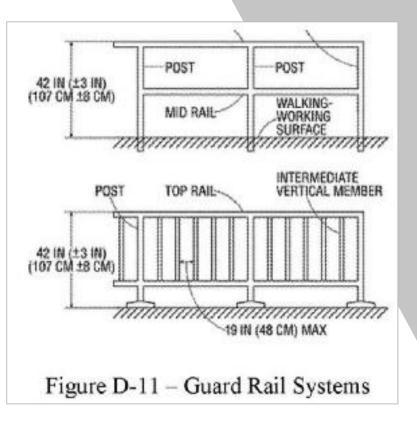
https://www.aecinfo. com/crankyportable-winchsystem-125126/powe.html

 \leftarrow Winch

Material Lift \rightarrow

https://www.genielift.com/e n/material-handlingproducts/material-lifts Model GH-5.6

Material Moving Decision Matrices


Criteria	Hand-carry	Winch/Pulley	Conveyor Purchase	Conveyor Rent	Moving Platform purchase	Moving Platform Rent
Up-front costs	36	48	41	51	48	50
Long-term investment	29	55	46	47	51	44
Installation Time	38	51	42	56	47	54
Total	103	<mark>154</mark>	129	<mark>154</mark>	146	<mark>148</mark>

Roof Safety

- OSHA- Railing Systems
 - Fe26 Iron Railing
 - Aluminum Made. Fortress™

Durable.

(https://www.fallprotect.com/techtalk/osha-requirements-for-guardrail-and-safety-railing-compliance/)

Importance in Documentation

Important Semester Document

Thursday, October 25, 2018 11:36 AM

Irrigation Recommendation Report

End of Semester Gantt Chart Amin's Book pdt UF Gantt 2005-Chart End of 04RooftopGan irrigation_re... inigation_re...

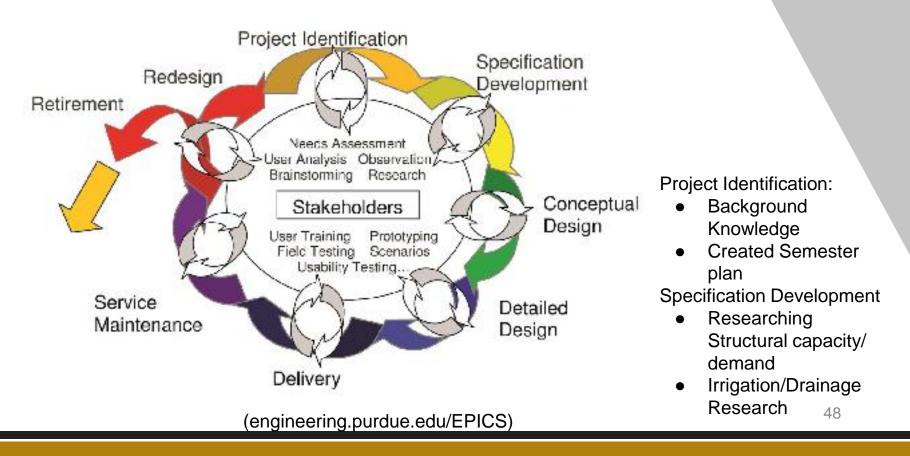
Irrigation Research

Roof Loads Doc

Roof Weight Excel Doc

Roof Safety Research Report

Rooftop Safety Report US Army Reserve Center **Building Information**



Foics Urban Farms Learn

EPICS Design Phase

EPICS Design Process

Next Semester Recommendation

- Potentially high cost for this project
- Consider creating a design for 1 roof
- Keep design general so it can be modified

Image acquired from amazon.com

Questions, Comments, and Concerns