LAKOTA Design Review Fall 2017

December 8, 2017

Outline

- Community Partner Introduction
- Greenhouse
- Bee Box

SOUTH DAKOTA

SCHOOL OF MINES & TECHNOLOGY

PURDUE university.

Community Partner Information

Pine Ridge Reservation

- Population: Estimated 20,000
- Food desert
- Lowest per capita income in US
- 70% Unemployment
- 50% of those over 40 years old have diabetes

Poverty by design

South Dakota's Indian Reservations

Community Partner Information

EPICS

Community Partners

Introduction to the Team

SOUTH DAKOTA

- Samuel Rickman
- Shashwati Shradha

7

- Lashell Bagola
- Akaya (Amanda) Ruiz

EPICS

Rick Gerlach

PURDUE UNIVERSITY®

- Aimee Atakere Civil 2021
- Pheobe Appel ChE 2020
- Jonathan Damon ME 2021
- Shamya Dey ME 2021
- Jacob Lundgren IE 2021
- Taihai He CompE 2019
- Brendan Proudfoot ME 2021

- Location on OLC campus
- Will serve as a learning and community center.
- Changes in project direction:
 - "porch-able" greenhouse
 - exterior of a larger scale greenhouse
 - overall design of a large scale greenhouse
- Have received permission and blessings from the OLC Tribal College President and He Sapa Center Director

- Create Greenhouse Design for OLC's campus
 - Cost effective
 - Durable
 - Size 40 ft x40 ft
 - Educational area should occupy a large portion of the interior area.
 - Meant to serve as a learning and community center as well as a location for food production.
 - Possibly grow tomatoes, lettuce, shrubs, local medicinal herbs, and other local plants

Disputed Land

EPICS

Survey of Students

- 26 students at the He Sapa campus
- Additional focus: learning center

RANK	ANSWER	RESPONSES
1.	See plants	11
2.	Learn about plants that they can then grow on their own	10
3.	Get homework done, relax and read	4
4.	Learn about the Lakota tradition and native plants	3
5.	Clean air, fresh fruits	3
	TOTAL	31

Donated Panels

Quantity	Item
5	12' 2" x 1" steel tube
2	15' 2" x 1" steel tube
2	24' 2" x 1" steel tube
2	4' x 8' plexiglass/mesh panel
2	4' x 8' sheet metal panel
6	4' x 8' sheet metal/plexiglass panel
4	8' x 8' plexiglass/mesh panel
4	8' x 8' sheet metal panel
4	8' x 8' sheet metal/plexiglass panel
1	6' x 8' sheet metal door panel
-	Miscellaneous wood beams and boards

Brainstorming Pictures

Pictures of Team from Trip

The 76.00% First Res First with First which its Meanings on call walkings these Related CRE warden LRES more Relational control in the second second

the first of ministry being these first finites with the first and a line being of a page 1800 bring has and the heater was consider in the size of being be

The Day C. CAN, Out Dates of your theor by to balance of it is studied were been been party of any been and the base base been been and that we been been and the other base of the base

EPICS

Cultural experience

Significance of Greenhouse

Not solely meant for food production but as a learning centre where the elders pass on their knowledge to the young. Active learning area is an *essential part* of the structure.

South Dakota Trip (Geothermal Greenhouse)

- Survived hail and 70 mph winds that didn't damage structure
- Based on Russ Finch
 Greenhouse in the snow.
- Polycarbonate sheeting covers the top of the greenhouse
- Not operational

South Dakota Trip (Geothermal Greenhouse)

- Cooling system inside greenhouse.
- Fan in second picture blows air into main section.
- Corrugated tubes help cool the system with a fan
- 16 tubes 8ft in the ground pull heat from the ground into the greenhouse

Greenhouse Technology

18

Differences in Potential Materials

Plexiglas -> Poly(methyl methacrylate)¹

Molecular	Structure ²	Bending	Compressive	Impact	Refractive	Glass
Formula		Strength	Strength	Strength	Index	Temperature
(C5O2H8)n		120-148 MPa	83 - 124 MPa	0.16-0.27J/c m	1.49 (at 20 °C)	105°C

Polycarbonate¹

Molecular	Structure ²	Bending	Compressive	Impact	Refractive	Glass
Formula		Strength	Strength	Strength	Index	Temperature
(C5O2H8)n	HaC CHa	141-145 MPa	117 MPa	0.8-1.28J/c m	1.58 (at 20 °C)	150°C

Low Resolution Prototypes

Low Resolution Prototypes

solar greenhouse plastic sheets Wall fans tood from Interpet & local example Idea Soil inside need to be used to plaint anything one wants. Should be cheaper. Night brick walls support, should be solid and cheaper.

Description of work completed this semester

Description of work completed this semester

Description of work completed this semester

Ford Reporting to here the get to cover main Pipes to address Heating Cooling needs Possible ? Dig down Extende one in PR ? [8 pipe + fan] to access underground had raised Juden De Grouping Room : 40. Long by 15 Wide EASAD BOB 00 00 chower 200m 3 of Yuki's Clear Parets To Devide The Zoom,) the Form (But to also make it wisible from one side 94841 40 cionza to another), (Also allows natural light to enter the education medicinal Lodge Side de La Storia pit to represent the sacred fire > curved Stating area "Eagles Recting Anea" Cutture-medicinal Ladique Frinkesolution Solution AK RUR Oglala Soluta College EPICS

Anticipated Achievements

- Finalizing brainstorming process
- Final design for the greenhouse
- List of specifications and materials.

EPICS

Questions?

Introduction to the Team

SOUTH DAKOTA

SCHOOL OF MINES & TECHNOLOGY

- Bo Paulsen
 Mechanical Engineering, 2018
- Averyonna Kimery Metallurgical Engineering, 2019

PURDUE UNIVERSITY®

- Caleb King Aeronautical and Astronautical Engineering 2021
- Kendall Kyle *Civil Engineering 2019*
- Graham Oberweiser
 Electrical Engineering 2021

Overview

Design a bee box that can withstand South Dakota elements and can be mass produced.

Purdue-Interior

SDSMT- Exterior

Overview

Help Thunder Valley CDC to become a large scale honey producer

Instruction Manual

Demonstration Video

Manufacturing Templates

Maximize Honey Production

Produce locally and easily

Able to withstand elements

Develop instructions to build and maintain

- Designed prototypes
- Testing Cedar and Douglas Fir
 - Most common woods used in bee hives
 - Cedar is culturally significant
- Testing latex and acrylic paint, linseed oil, and tung oil
 - \circ Low cost options
 - Organic options

- Brainstorm
 - Multiple ideas
- Detailed Design
 - Created a detailed design for prototyping
- Prototype
 - Frame
 - Instruction Manual

Interior Progress

Brainstormed Ideas

Brainstormed Ideas

Detailed Design

Interior Progress

Detailed Design

Prototype

Interior Progress

EPICS

- Honeycomb
 - 2 popular theories of beekeeping
 - No Foundation (natural beekeeping)
 - Only the frames are provided to the bees, they build their own honeycomb on the frame
 - Foundation (most common)
 - A foundation made of plastic or wire coated in wax is provided for bees to use as base for their honeycomb

Interior Progress

- Brackets help increase tolerance
- Metal not ideal
 - Temperature
 - Moisture
- Plastic not ideal
 - Less life than wood
 - Does not harm bees in small amounts

- Designed brackets multiple times after finding issues with them
- 3D printed brackets and built one frame to test

ltem	Quantity	Price	Total Price
Bee Box from Dadant.com	3	\$67+Shipping	\$250
Timelapse Cameras	1	\$90	\$90
Interior Wood	-	\$50	\$50
Exterior wood	-	\$80	\$80
Coatings	-	\$40	\$40
		Total Cost	\$510

Anticipated Achievements

- Completed transition document for next semester:
 - Partnership
 - Cultural importance
 - Suggestions
- Spring Semester goals
 - Finalize interior and exterior
 - Interior exterior integration
 - Create manufacturing aids
 - Produce video

Questions?

